Red Hat Reference Architecture Series

Comparing BenchmarkSQL
Performance on Red Hat®
Enterprise Linux 5 to Windows
Server Enterprise

BenchmarkSQL 2.3.2 BenchmarkSQL 2.3.2
Postgres Plus 8.3.8 SQL Server 2008 R2
Red Hat® Enterprise Linux 5 Compared to: Windows Server Enterprise
HP ProLiant DL370 G6 HP ProLiant DL370 G6
(Intel Xeon W5580 - Nehalem) (Intel Xeon W5580 - Nehalem)
Version 1.1
March 2010

O red hat EﬂterpﬂSEDB'

The Enterprise Postgres Company

)

Comparing BenchmarkSQL Performance on Red Hat® Enterprise Linux 5
to Windows Server Enterprise

1801 Varsity Drive™

Raleigh NC 27606-2072 USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

EnterpriseDB and Postgres Plus are trademarks of EnterpriseDB Corporation.

Microsoft, Windows, Windows Server and SQL Server are registered trademarks of Microsoft
Corporation.

Intel, the Intel logo, Xeon and Itanium are registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

All other trademarks referenced herein are the property of their respective owners.
© 2010 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

www.redhat.com 2

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Table of Contents

1 EXECULIVE SUIMIMEAIYuuuuuuetueueeeeeesseessesssnsssssnnnaeeesessnnaeeeees 4
2 TESE CONTIGUIATION.eeeeieiee ettt ettt e e e ettt e e e e e e e e s e et e ettt e e e bbbt b e e e e e as 5
P2 I =T 0 111 U= T PSPPSR 5
2.2 SOMWATIE. ... 5
2.3 SAN . ettt e e e e e et ettt e e e e e e e et bt e e e e e e e e e e aa b e raaaeaaaaaeas 6

3 TEST CONFIGUIALION.ttt e e e e e e s e e e e e e ennn s 7
0 0 A VAT Lo o = o PP ETTR 7
3.1.1 TSt PArAmMELEIS. ... ettt e e e e e e ettt e e e e e e e e eeaeba e e e eean e as 7

G = (0] {111 o T 9
3.3 TUNING & OPtMIZALIONS. ... a e e s e aa e as 10
3.3.1 OPEratiNg SYSTEIM.....cciiiiiiiiiiiiiee ettt e e e e e s e e e e e e e e st b e eeeeeees 10

G TG] (0] - o [PP 10
3.3.3 DAtADASE. ... e e e e e ann e e e eeees 11
I D 1Y TSRS 11

A TESE RESUILS. ...ttt sttt sttt ettt ettt et ne e e e s 12
SO0] o[11 5] o] o - TP 13
APPENIX A: LINUX PrOfIlES. ...t e e e e e e e e e eennnees 14

3 www.redhat.com

)

1 Executive Summary

This paper compares the performance of an Online Transaction Processing (OLTP) based
workload executed on a PostgreSQL database running on a Red Hat Enterprise Linux 5.4
operating system to that of the same workload executed on a SQL Server database running
on Windows Server 2008 R2 Enterprise.

For this effort, Red Hat partnered with EnterpriseDB, a leader in products and services based
on PostgreSQL, the world's most advanced open source database. Their Postgres Plus
product is ideally suited for transaction-intensive applications requiring superior performance,
massive scalability, and compatibility with proprietary database products. Additionally,
Postgres Plus provides an economical open source alternative or complement to proprietary
databases without sacrificing features or quality.

www.redhat.com 4

2 Test Configuration

2.1 Hardware

Dual Socket, Quad Core (Total of 8 cores)

Database Intel® Xeon® CPU W5580 @ 3.20GHz
2 X HP ProLiant DL370 G6

48 GB RAM
_ Quad Socket, Quad Core (Total of 16 cores)
Driver _ Intel® Xeon® CPU X7350 @ 2.93GHz
1 x HP ProLiant DL580 G5
64 GB RAM

Table 1: Hardware

2.2 Software
Linux Windows
Red Hat Enterprise Linux 5.4 . .
(0153 (2.6.18-164.¢5) Windows Server 2008 R2 Enterprise

Database Postgres Plus 8.3.8 SQL Server 2008 R2
Workload BenchmarkSQL 2.3.2 BenchmarkSQL 2.3.2

JDBC 2.0 2.0

Driver

Table 2: Software

5 www.redhat.com

)

2.3 SAN

Both the Linux and Windows Server systems utilized two MSA2324fc fibre channel storage
arrays for this testing, used to store workload data and logs. Additional details regarding the
Storage Area Network (SAN) hardware are in Table 3.

Storage Controller:
Code Version: M100R18
Loader Code Version: 19.006
Memory Controller:
Code Version: F300R22
(2) HP StorageWorks MSA2324fc Management Controller
Fibre Channel Storage Array Code Version: W440R20
Loader Code Version: 12.015
Expander Controller:
Code Version: 1036
CPLD Code Version: 8
Hardware Version: 56

(1) HP StorageWorks 4/16 SAN Switch | Firmware: v5.3.0
(1) HP StorageWorks 8/40 SAN Switch | Firmware: v6.1.0a

Table 3: Storage Area Network

www.redhat.com 6

)

3 Test Configuration

3.1 Workload

An Oracle OLTP workload was chosen as it represents a common database implementation
exercising server memory and 1/0O sub-systems.

Characterizing database performance is difficult due to the seemingly endless combinations
of tuning attributes available to each database. Performance results can vary a great degree
depending on variables such as the application used and database architecture.

For this cross platform database comparison, a vendor and platform neutral driver application
was selected. Based on JTPCC and modeled after an industry benchmarking association
scenario, BenchmarkSQL is an open source and easy to use JDBC benchmark application
closely resembling the TPC-C standard for OLTP. As such, BenchmarkSQL can be pointed
at many different databases. As a Java application, it is OS and platform unaware using
database neutral drivers for database communication, effectively eliminating outside factors
such as proprietary interfaces that could influence performance in one direction or another.
The end result is a comparison focused on the core SQL processing and transaction handling
abilities of the database.

The Java Database Connectivity (JDBC) driver was used for database access in all testing.
The open source BenchmarkSQL project is available at
http://sourceforge.net/projects/benchmarksql/. The JTPCC benchmark is also available on
SourceForge at http://sourceforge.net/projects/jtpcc.

The BenchmarkSQL OLTP scenario models a wholesale supplier managing orders. The test
is designed to impose a transaction load on a database and track the amount of new orders
placed and completed under this load. In addition to transaction processing, the suite strings
together operations into large transactions. Transactional and referential integrity is ensured
throughout the duration of the test by comparing transaction history with actual results. Non-
transactional database engines falil this verification.

3.1.1 Test Parameters

The test was driven by BenchmarkSQL with a setting of 32 warehouses and models a set of
five transactions driven by a group of simulated operators. The transactions modeled are:

« New-Order

« Payment
« Order Status
« Delivery

« Stock Level

The data set exercised emulates the structural data requirements of a real business. In this
example, company X has multiple warehouses, each consisting of ten districts.

Each district has 3000 customers and its own sequential system for numbering order

7 www.redhat.com

http://sourceforge.net/projects/jtpcc
http://sourceforge.net/projects/benchmarksql/

)

transactions. Additionally, each district as its own operator who creates new orders, books
payments, checks the status of existing orders, issues delivery tickets, and checks stock
level.

Each warehouse has inventory from a list of 100,000 parts. Therefore a stock-level of as
much as 100,000 parts must be maintained per warehouse. For every warehouse added, the
amount of information grows rapidly. For instance, in a test executed on 100 warehouses
there will be 1000 districts, each with an operator (meaning there will be 1000 terminal
connections pushing transactions) and 3000 customers for a total of 3,000,000 customers to
track along with the status of any orders generated for each customer.

100 warehouses * 10 districts = 1000 districts
1000 districts * 3000 customers = 3,000,000 customers

As a result, a benchmark simulating 10,000 warehouses requires significantly more
underlying hardware than a test simulating 100 warehouses.

The test is designed to measure not just the raw throughput of a database, but the throughput
of New-Order transactions while under a heavy load from the other four transactions;
Payment, Order Status, Delivery and Stock Level. These transactions not only generate load,
but also exercise the ability of the database to effectively and efficiently maintain the integrity
of information as it is being accessed and changed from multiple points. The database is
responsible for processing concurrent transactions on the same information and giving results
that are accurate for the specific point in time in which they are relevant. For example,
checking the status of an order tests the multi-version concurrency control of a database (i.e.,
the value returned from an order status query should reflect the state at the exact time of the
request). This is true even if an update is performed that would change the state of that order
milliseconds after the query was issued.

A minimum ratio of the other four transaction types is maintained to ensure a healthy load is
applied to the database at the same time New- Order transactions are being processed. This
ratio is based on a goal of a minimum of one Payment transaction for each New-Order and a
minimum of one Order-Status, Delivery and Stock-Level transaction for every ten New-
Orders. This order is maintained by the testing application.

Transaction Type Mix Percentage

New-Order Up to 45.0
Payment 43.0 Minimum
Order-Status 4.0 Minimum
Delivery 4.0 Minimum
Stock-Level 4.0 Minimum

Table 4: Test Transaction Ratio

Ramp-up (in this case 10 minutes) is the amount of time a test is running only to allow the
database to reach a steady transaction rate, where the caches are filled and prioritized. The
database is allocated time to adjust to the load produced by the test.

www.redhat.com 8

)

After the ramp-up time the measurement interval was 60 minutes, the period during in which
transactions per minute are tracked.

BenchmarkSQL was configured to generate as many transactions as possible at the tested
databases. Further, this scenario was configured to skip the wait times of a standard
benchmarking association-style test in order to create the heaviest load and update
contention possible. The effective rate of New-Order transactions is approximately equivalent
to the maximum throughput of 300 warehouses and 3000 terminals.

Parameter Value

Warehouses 100
Districts? 1,000
Customers? 3,000,000
Test Ramp-Up 10 Minutes
Test Duration 60 Minutes

1Ratio of Warehouses to Districts is 1:10
2Ratio of Districts to Customers is 1:3000

Table 5: BenchmarkSQL Test Settings

3.2 Profiling

CPU cycles were closely monitored throughout all testing using Oprofile, a system-wide
profiler for Linux systems consisting of a kernel driver, a daemon for collecting sample data,
and several post-profiling tools for parsing data. It leverages the hardware performance
counters of the CPU which can be used for basic time-spent profiling. All code is profiled
including hardware and software interrupt handlers, kernel modules, the kernel, shared
libraries, and applications. Oprofile was used to collect performance statistics from both the
PostgreSQL database server and the BenchmarkSQL test driver. The Windows utility
Perfmon was used to collect similar statistics (CPU usage, data/log I/O, etc.) on the SQL
Server database server.

Reference Appendix A for example CPU profiles of the BenchmarkSQL driver system as well
as that of the Postgres Plus server.

9 www.redhat.com

)

3.3 Tuning & Optimizations

3.3.1 Operating System

To minimize latency for I/O requests, the deadline kernel 1/0O scheduling algorithm
(elevator=deadline) was used. This scheduler provides near real-time behavior and uses a
round robin policy to attempt fairness among multiple I/O requests and to avoid process
starvation. Using five I/O queues, this scheduler aggressively re-orders requests to improve
I/O performance.

Hyperthreading technology was not engaged during testing.
HugePages were not configured.

Several processes deemed unnecessary for the purpose of this testing were disabled using
the chkconfig command on both the client and server systems.

auditd iscsi rpcgssd
avahi-daemon iscsid rpcidmapd
bluetooth isdn rpcsvegssd
cmirror kdump saslauthd
cpuspeed libvirtd sendmail

cups mcstrans setroubleshoot
gpm mdmonitor smartd
haldaemon modclusterd xend

hidd pcscd xendomains
hplip restorecond xfs

ip6tables rhnsd xinetd

iptables ricci yum-updatesd

Security Enhanced Linux (SELinux) was also disabled.

3.3.2 Storage

Each of the HP MSA storage arrays were divided into four 12-disk RAIDO vdisks. On each
array, four 20GB LUNs were created for use by PostgreSQL and the same for SQL Server.

To guarantee separate spindles for data and logging (to avoid mixing random and sequential
I/0), the database servers each used Logical Volume Management (LVM) to stripe eight
LUNSs presented from storage into two 80GB volumes, one for data files and the other for

logging.

The volume for the data files was formatted with a file system of type ext3 while the log
volume was configured to use ext2.

Device-mapper multipathing was used to manage multiple paths to each LUN.

www.redhat.com 10

3.3.3 Database

Minimal custom tuning was implemented to the PostgreSQL database for all performance
measurements. The parameters modified are listed below.

Parameter Default Modified
autovacuum true false
checkpoint_timeout 5min 1h

effective_cache_size 3041205 4050045

max_connections 100 400

max_fsm_pages 7522049 10044817

max_fsm_relations 470128 627801
shared_buffers 988820 2640950
work_mem 261288 348211

Table 6: PostgreSQL Tuning

Already optimized for peak performance out of the box, no specific SQL Server tuning was
performed.

3.3.4 Driver

The BenchmarkSQL script runBemchmark.sh was modified on the driver system to increase
java memory from the default 128MB to 4GB (e.qg., java -Xms4000m -Xmx4000m
-Xmn3600m).

Additionally, the BenchmarkSQL application was modified to properly handle row locking
because it did not support the “FOR UPDATE” syntax outside of a cursor. The change
allowed BenchmarkSQL to lock rows in SQL Server in the same manner it uses for
PostgreSQL and Oracle. This modification was posted to SourceForge.

11 www.redhat.com

4 Test Results

Figure 1 graphs the results of increasing the number of terminals, where each terminal
represents 3000 users, on a two-socket, quad-core HP ProLiant DL370 G6. The throughput
demonstrates scaling only to the point where the network becomes the bottleneck for the
client-server remote connections.

Scaling BenchmarkSQL Users

70,000

60,000
o 50,000 -
5
=
= 40,000 B Postgres Plus
& [RHEL]
0 B sQL Server
S 30,000 [Windows]
S
(2]
c
€ 20,000
l_

10,000 |

0 |
20 40 60 80 100 120 140
BenchmarkSQL Terminals

Figure 1: Results of Scaling BenchmarkSQL Users

While it is possible to simply change the network card to eliminate the bottleneck, this may not
be an option in many deployment scenarios. This is especially true in public cloud
infrastructures. The network connectivity in public cloud deployments can be very
unpredictable and the more efficient use of network resources by RHEL and PostgreSQL
shown below demonstrates that it is a better choice for these environments.

www.redhat.com 12

)

5 Conclusions

This paper compares the performance and scaling of the BenchmarkSQL workload running
on Red Hat Enterprise Linux 5.4 with that of the same workload on Windows Server 2008 R2
Enterprise. The database servers used were HP ProLiant DL370 G6 servers equipped with
48 GB of RAM and comprised of dual sockets, each with a 3.2 GHz Intel Xeon W5580
Nehalem processor (totaling 8 cores).

The data presented in this paper establishes that a common OLTP workload on PostgreSQL
can contend with SQL Server and with minimal tuning, is capable of outperforming SQL
Server using the same load in an enterprise environment.

The number of actual users and throughput supported in any specific customer situation
would naturally depend on the specifics of the application used and the degree of user
activity.

13 www.redhat.com

)

Appendix A: Linux Profiles

This appendix contains CPU profiles for the Linux systems captured during a test run of 40
BenchmarkSQL terminals. Note how java itself is the major consumer of CPU cycles on the
driver system. The driver load was moved to a remote connection because java's CPU
footprint made it difficult to determine exactly how many cycles were being allocated to the
database load. Also note the heavy footprint of the 1000 (1GB interconnect used for
client/server traffic) as the 1/O bottleneck is identified.

Driver CPU Profile:

CPU: Core 2, speed 2933.43 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000
CPU_CLK_UNHALT...|
samples| %]
87764690 62.5641 java
CPU_CLK_UNHALT...|
samples| %]
79134323 90.1665 anon (tgid:20786 range:0x2aaaab525000-0x2aaaabb75000)
6641092 7.5669 libjvm.so
1185918 1.3512 libpthread-2.5.s0
345514 0.3937 libc-2.5.s0
234838 0.2676 libnet.so
96470 0.1099 libjava.so
74092 0.0844 libmawt.so
30290 0.0345 libX11.s0.6.2.0
16018 0.0183 libfontmanager.so
6129 0.0070 libawt.so
6 6.8e-06 librt-2.5.s0
42302592 30.1559 vmlinux
4101457 2.9238 ip_conntrack
2912736 2.0764 e1000e
709744 0.5059 oprofiled
CPU_CLK_UNHALT...|
samples| %]
702806 99.0225 oprofiled
6938 0.9775 libc-2.5.s0
503225 0.3587 python
CPU_CLK_UNHALT...|
samples| %]

www.redhat.com 14

)

402738 80.0314 libpython2.4.s50.1.0
33826 6.7218 libc-2.5.s0
26601 5.2861 libpthread-2.5.s0
21837 4.3394 libm-2.5.s0
12180 2.4204 timemodule.so
2227 0.4425 libglib-2.0.5s0.0.1200.3
1302 0.2587 1d-2.5.s0
CPU: Core 2, speed 2933.43 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000

samples % image name app name symbol name

79134323 56.4118 anon (tgid:20786 range:0x2aaaab525000-0x2aaaabb75000) java anon
(tgid:20786 range:0x2aaaab525000-0x2aaaabb75000)

6641092 4.7342 libjvm.so java /usr/lib/jvm/java-1.6.0-openjdk-
1.6.0.0.x86_64/jre/lib/amd64/server/libjvm.so

4101457 2.9238 ip_conntrack ip_conntrack /ip_conntrack
3101706 2.2111 vmlinux vmlinux schedule

2912736 2.0764 e1000e €1000e /e1000e

1974773 1.4077 vmlinux vmlinux lock_timer base
1655304 1.1800 vmlinux vmlinux tcp_v4_rcv

1635908 1.1662 vmlinux vmlinux stext.show_schedstat
1597135 1.1385 vmlinux vmlinux __mod_timer

1051217 0.7494 vmlinux vmlinux nr_context_switches
1004201 0.7159 vmlinux vmlinux dev_queue_xmit
905060 0.6452 vmlinux vmlinux copy_user_generic_unrolled
861823 0.6144 vmlinux vmlinux pskb_copy

834649 0.5950 vmlinux vmlinux skb_append_datato_frags
819039 0.5839 vmlinux vmlinux .text.cpu_to_phys_group
702806 0.5010 oprofiled oprofiled /usr/bin/oprofiled

697813 0.4974 vmlinux vmlinux kfree

668870 0.4768 vmlinux vmlinux mwait_idle

631582 0.4502 vmlinux vmlinux tcp_ack

625379 0.4458 vmlinux vmlinux __write_lock_failed
602601 0.4296 vmlinux vmlinux thread_return

592207 0.4222 vmlinux vmlinux system_call

586281 0.4179 vmlinux vmlinux __alloc_skb

571547 0.4074 vmlinux vmlinux ip_output

566669 0.4040 vmlinux vmlinux kmem_ cache_free
525573 0.3747 vmlinux vmlinux __wake_up

515956 0.3678 vmlinux vmlinux tcp_sendmsg

507699 0.3619 vmlinux vmlinux ip_route_input

501778 0.3577 vmlinux vmlinux tcp_rcv_established
490709 0.3498 vmlinux vmlinux tcp_sendpage

473004 0.3372 libpthread-2.5.s0 java pthread_mutex_lock
467205 0.3331 vmlinux vmlinux init_idle

441834 0.3150 vmlinux vmlinux try_to_wake_up

431200 0.3074 vmlinux vmlinux tcp_recvmsg

15 www.redhat.com

)

428224 0.3053 vmlinux vmlinux .text.cpu_attach_domain
408606 0.2913 vmlinux vmlinux lock_sock
406349 0.2897 vmlinux vmlinux ip_queue_xmit

CPU: Core 2, speed 2933.43 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000

samples % symbol name

3101706 7.3322 schedule

1974773 4.6682 lock_timer base

1655304 3.9130 tcp_v4_rcv

1635908 3.8672 .text.show_schedstat
1597135 3.7755 _ _mod_timer

1051217 2.4850 nr_context_switches
1004201 2.3739 dev_queue_xmit

905060 2.1395 copy_user_generic_unrolled
861823 2.0373 pskb_copy

834649 1.9730 skb_append_datato_frags
819039 1.9361 .text.cpu_to_phys_group
697813 1.6496 kfree

668870 1.5812 mwait_idle

631582 1.4930 tcp_ack

625379 1.4783 __ write_lock failed
602601 1.4245 thread_return

592207 1.3999 system_call

586281 1.3859 __ alloc_skb

571547 1.3511 ip_output

566669 1.3396 kmem_cache free

525573 1.2424 _ wake_up

515956 1.2197 tcp_sendmsg

507699 1.2002 ip_route_input

501778 1.1862 tcp_rcv_established
490709 1.1600 tcp_sendpage

467205 1.1044 init_idle

441834 1.0445 try_to_wake_up

431200 1.0193 tcp_recvmsg

428224 1.0123 .text.cpu_attach_domain
408606 0.9659 lock sock

406349 0.9606 ip_queue_xmit

387542 0.9161 tcp_transmit_skb

376864 0.8909 sock wfree

374083 0.8843 avc_audit

372781 0.8812 pfifo_fast_enqueue

371685 0.8786 .text.domain_distance
357001 0.8439 _ read_lock failed

CPU: Core 2, speed 2933.43 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000

www.redhat.com 16

samples %

image name

app name

symbol name

79134323 56.4118 anon (tgid:20786 range:0x2aaaab525000-0x2aaaabb75000) java
(tgid:20786 range:0x2aaaab525000-0x2aaaabb75000)
6641092 4.7342 libjvm.so
1.6.0.0.x86_64/jre/lib/amd64/server/libjvm.so

3101706
1974773
1655304
1635908
1610639
1597135
1051217
1004201
917511
905060
901553
861823
834649
819039
702806
697813
668870
657744
631582
625379
602601
601138
592207
586281
583925
571547
566669
525573
515956
507699
501778
490709
478056
473004
467205

2.2111
1.4077
1.1800
1.1662
1.1482
1.1385
0.7494
0.7159
0.6541
0.6452
0.6427
0.6144
0.5950
0.5839
0.5010
0.4974
0.4768
0.4689
0.4502
0.4458
0.4296
0.4285
0.4222
0.4179
0.4163
0.4074
0.4040
0.3747
0.3678
0.3619
0.3577
0.3498
0.3408
0.3372
0.3331

vmlinux
vmlinux
vmlinux
vmlinux
ip_conntrack.ko
vmlinux
vmlinux
vmlinux
e1000e.ko
vmlinux
ip_conntrack.ko
vmlinux
vmlinux
vmlinux
oprofiled
vmlinux
vmlinux
e1000e.ko
vmlinux
vmlinux
vmlinux
ip_conntrack.ko
vmlinux
vmlinux
e1000e.ko
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
ip_conntrack.ko
libpthread-2.5.s0
vmlinux

java

vmlinux
vmlinux
vmlinux
vmlinux

ip_conntrack.ko

vmlinux
vmlinux
vmlinux
e1000e.ko
vmlinux
ip_conntrack.ko
vmlinux
vmlinux
vmlinux
oprofiled
vmlinux
vmlinux
e1000e.ko
vmlinux
vmlinux
vmlinux
ip_conntrack.ko
vmlinux
vmlinux
e1000e.ko
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
ip_conntrack.ko
java
vmlinux

/usr/lib/jvm/java-1.6.0-openjdk-

schedule
lock_timer base
tcp_v4_rcv
text.show_schedstat
tcp_packet
__mod_timer
nr_context_switches
dev_queue_xmit
e1000_xmit_frame
copy_user_generic_unrolled
ip_conntrack_find_get
pskb_copy
skb_append_datato_frags
.text.cpu_to_phys_group
/usr/bin/oprofiled
kfree
mwait_idle
e1000_clean_tx_irq
tcp_ack
__write_lock_failed
thread_return
__ip_ct_refresh_acct
system_call
__alloc_skb
e1000_clean_rx_irq
ip_output
kmem_cache_free
__wake_up
tcp_sendmsg
ip_route_input
tcp_rcv_established
tcp_sendpage
ip_conntrack_in

pthread_mutex_lock

init_idle

danon

On the PostgreSQL server, note that postgres itself and components such as hash searching
and lock acquisition now occupy the top CPU cycles as expected.

PostgreSQL Server CPU Profile:

17

www.redhat.com

)

CPU: Core 2, speed 3199.19 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000
CPU_CLK_UNHALT...|
samples| %]
10274094 82.5856 postgres
CPU_CLK_UNHALT...|
samples| %]
8703603 84.7141 postgres
1564679 15.2294 libc-2.5.s0
5812 0.0566 libm-2.5.s0
1825849 14.6766 vmlinux
174818 1.4052 e1000e
39240 0.3154 oprofiled
CPU_CLK_UNHALT...|
samples| %]
39060 99.5413 oprofiled
180 0.4587 libc-2.5.s0
31963 0.2569 perl
CPU_CLK_UNHALT...|
samples| %]
29269 91.5715 libperl.so
1356 4.2424 libc-2.5.s0
606 1.8959 libz.s0.1.2.3
461 1.4423 Zlib.so
264 0.8260 libpthread-2.5.s0
3 0.0094 1d-2.5.s0
3 0.0094 libm-2.5.s0
1 0.0031 HiRes.so
22642 0.1820 oprofile
15574 0.1252 bridge
14687 0.1181 gla2xxx
12916 0.1038 dm_mod
5939 0.0477 scsi_mod
5165 0.0415 jbd
4936 0.0397 db2fm
CPU_CLK_UNHALT...|
CPU: Core 2, speed 3199.19 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000

samples % image name app name symbol name
414702 3.3335 postgres postgres hash_search with hash_wvalue
407760 3.2777 postgres postgres LWLockAcquire

www.redhat.com 18

382291 3.0729 postgres postgres index_getnext

295996 2.3793 postgres postgres _bt_compare

293843 2.3620 postgres postgres AllocSetAlloc

230794 1.8552 libc-2.5.s0 postgres memcpy

229094 1.8415 postgres postgres GetSnapshotData
223350 1.7953 postgres postgres PinBuffer

199799 1.6060 postgres postgres _bt_checkkeys

181103 1.4557 postgres postgres XLoglnsert

178660 1.4361 libc-2.5.s0 postgres viprintf

177767 1.4289 postgres postgres ExecInitExpr

174818 1.4052 e1000e e1000e /e1000e

168057 1.3509 postgres postgres LWLockRelease
135002 1.0852 postgres postgres SearchCatCache
134273 1.0793 libc-2.5.s0 postgres strncpy

128127 1.0299 vmlinux vmlinux schedule

122210 0.9824 postgres postgres hash_any

121631 0.9777 postgres postgres slot_deform_tuple
115940 0.9320 postgres postgres PostgresMain

108476 0.8720 postgres postgres fmgr_info_cxt_security
107241 0.8620 postgres postgres MemoryContextAllocZeroAligned
103539 0.8323 libc-2.5.s0 postgres strlen

97895 0.7869 postgres postgres FunctionCall2

94390 0.7587 postgres postgres AllocSetFree

83720 0.6730 postgres postgres heap_page_prune_opt
77368 0.6219 libc-2.5.s0 postgres _int_malloc

76237 0.6128 libc-2.5.s0 postgres _itoa_word

72867 0.5857 postgres postgres internal_putbytes
71588 0.5754 postgres postgres pg_mblen

71536 0.5750 postgres postgres ExecProject

70928 0.5701 postgres postgres pfree

69779 0.5609 postgres postgres HeapTupleSatisfiesVacuum
63584 0.5111 postgres postgres MemoryContextAlloc
63090 0.5071 postgres postgres pg_mbcliplen

62862 0.5053 postgres postgres ReadBuffer_common
62052 0.4988 postgres postgres appendBinaryStringInfo

CPU: Core 2, speed 3199.19 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00
(Unhalted core cycles) count 100000

samples % image name app name symbol name

414702 3.3335 postgres postgres hash_search with hash_wvalue
407760 3.2777 postgres postgres LWLockAcquire

382291 3.0729 postgres postgres index_getnext

295996 2.3793 postgres postgres _bt_compare

293843 2.3620 postgres postgres AllocSetAlloc

230794 1.8552 libc-2.5.s0 postgres memcpy

229094 1.8415 postgres postgres GetSnapshotData

223350 1.7953 postgres postgres PinBuffer

19 www.redhat.com

)

199799
181103
178660
177767
168057
135002
134273
128127
122210
121631
115940
108476
107241
103539
97895
94390
83720
77368
76237
72867
71588
71536
70928
69779
63584
63090
62862
62052
61117

1.6060
1.4557
1.4361
1.4289
1.3509
1.0852
1.0793
1.0299
0.9824
0.9777
0.9320
0.8720
0.8620
0.8323
0.7869
0.7587
0.6730
0.6219
0.6128
0.5857
0.5754
0.5750
0.5701
0.5609
0.5111
0.5071
0.5053
0.4988
0.4913

postgres
postgres
libc-2.5.s0
postgres
postgres
postgres
libc-2.5.s0
vmlinux
postgres
postgres
postgres
postgres
postgres
libc-2.5.s0
postgres
postgres
postgres
libc-2.5.s0
libc-2.5.s0
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

www.redhat.com

postgres
postgres
postgres
postgres
postgres
postgres
postgres
vmlinux
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

20

_bt_checkkeys
XLoglnsert

viprintf

ExecInitExpr
LWLockRelease
SearchCatCache
strncpy

schedule

hash_any
slot_deform_tuple
PostgresMain
fmgr_info_cxt_security
MemoryContextAllocZeroAligned
strlen
FunctionCall2
AllocSetFree
heap_page_prune_opt
_int_malloc
_itoa_word
internal_putbytes
pg_mblen
ExecProject
pfree
HeapTupleSatisfiesVacuum
MemoryContextAlloc
pg_mbcliplen
ReadBuffer common
appendBinaryStringInfo
hash_seq_search

	 1 Executive Summary
	 2 Test Configuration
	 2.1 Hardware
	 2.2 Software
	 2.3 SAN

	 3 Test Configuration
	 3.1 Workload
	 3.1.1 Test Parameters

	 3.2 Profiling
	 3.3 Tuning & Optimizations
	 3.3.1 Operating System
	 3.3.2 Storage
	 3.3.3 Database
	 3.3.4 Driver

	 4 Test Results
	 5 Conclusions
	Appendix A: Linux Profiles

