
Using Firebird

(work in progress)

IBPhoenix Editors
Maintenance, additions: Firebird Project

16 July 2007 – Document version 2.0.2

Using Firebird: (work in progress)
16 July 2007 – Document version 2.0.2
by IBPhoenix Editors
Maintenance, additions: Firebird Project

iv

Table of Contents
1. About this book ... 1

Work in progress! .. 1
Origins .. 1
More documentation .. 1

2. About Firebird ... 2
Firebird's origins .. 2
The Firebird Foundation ... 2
Overview of Features ... 2

Firebird Server ... 3
Firebird clients ... 3
Summary of features .. 4

Classic and Superserver architectures .. 7
Comparison of characteristics ... 8
Which is better? ... 11
Embedded server .. 11

System Requirements ... 12
Server Memory (all platforms) .. 12
Disk space ... 12
Minimum machine specifications .. 13

3. About Clients and Servers .. 14
What is a Firebird client? ... 14
The Firebird client library ... 15

Client filenames ... 15
The server .. 16

Server tasks ... 16
Multiple servers ... 16
Server filenames ... 17

Client and server combined: Firebird Embedded Server .. 17
Embedded server on Windows .. 17
Embedded server deployment ... 18
Embedded server on Linux? ... 19

Application development .. 19
Embedded SQL in Firebird applications .. 20
Predefined vs. dynamic queries ... 20
RAD environments and component suites .. 21
Other connectivity components and drivers .. 23
API applications ... 23

Server-side programming .. 25
Stored procedures ... 25
Triggers ... 25
PSQL limitations .. 25
User-defined functions .. 26

Multi-database applications ... 26
Appendix A: Document history .. 27
Appendix B: License notice .. 28

v

List of Figures
3.1. The Firebird client/server model ... 15

vi

List of Tables
2.1. Summary of features ... 4
2.2. Comparison of Classic and Superserver architectures .. 8
2.3. Memory Requirements ... 12
2.4. Approximate Disk Space Requirements .. 12
2.5. Minimum machine specifications ... 13

1

Chapter 1

About this book

Work in progress!
This document is a work in progress. The Firebird documenters – all volunteers who work on this project in their
spare time – will publish more chapters as they go along. As we are but a few, the pace is pretty slow. However,
the few chapters that are present are up to date and will hopefully be a useful source of information for you.

If you find any errors or inconsistencies, please report them to the maintainers. Email addresses are at the end
of the book.

Origins
Using Firebird is not a new book. The IBPhoenix editors wrote it years ago for distribution on their Developer's
CD, when Firebird was still at version 1.0. Since then we have seen the arrival of Firebird 1.5 and 2.0, and most
of the book is now in serious need of updating. In 2005 the IBPhoenix company decided to open-source the
entire 26-chapter manual and hand it over to the Firebird Project for upgrading and maintenance.

We would like to thank IBPhoenix here for making this work freely available.

More documentation
If you're new to Firebird or want to brush up on the basics, read the Firebird Quick Start Guide first. There's
one available for every version of Firebird. Pick up yours from http://www.firebirdsql.org/?op=doc. This is also
a good starting place to find links to more Firebird documentation.

http://www.ibphoenix.com
http://www.firebirdsql.org/?op=doc

2

Chapter 2

About Firebird
Firebird is a powerful, compact client/server SQL relational database management system which can run on a
variety of server and client operating systems. Its officially supported platforms are Windows and Linux, but
Firebird is also known to run on several other OS's, such as FreeBSD and Apple Macintosh OS/X.

Firebird features a higher level of SQL standards compliance than most other industrial-strength client/server
database management systems on the market today, while implementing some powerful language features in
the vendor-specific sphere of procedure programming.

Firebird's origins
The product which today we call Firebird has been around, under a variety of names, for well over 20 years.
An overview of its interesting and at times stormy history can be found at http://www.firebirdsql.org/index.php
?op=history.

Developed as an ongoing open source project, Firebird is a descendant of Borland's InterBase 6.0 Open Edition
code which was released for open source development in July 2000 under the InterBase Public License (IPL).

The Firebird source code tree is maintained on the international open source code foundry, Sourceforge, by a
large team of professional developers who donate time and expertise voluntarily to fix, develop and enhance
this popular and feature-rich database management software.

The Firebird software products are distributed completely free of registration or deployment fees.

The Firebird Foundation
The Firebird Foundation supports the development of Firebird in several ways, among other things by issuing
grants to developers. Many people and companies who find Firebird useful have already become members or
sponsors. If you like Firebird, please consider doing the same. Making a one-time donation is also possible. You
can find more information at http://www.firebirdsql.org/index.php?op=ffoundation.

Overview of Features
Firebird is true client/server software, architected for use in local and wide-area networks. Accordingly, its core
consists of two main software programs:

1. The database server, which runs on a network host computer.

http://www.firebirdsql.org/index.php?op=history
http://www.firebirdsql.org/index.php?op=history
http://www.firebirdsql.org/index.php?op=ffoundation

About Firebird

3

2. The client library, through which users on remote workstations connect to and communicate with databases
managed by the server.

TCP/IP is the network protocol of choice for Firebird on all platforms, although Windows Networking (Net-
BEUI) is supported too for networks having Firebird running on a Windows NT, 2000/2003 or XP host server.

It is possible to run both server and client on the same physical machine and have the client connect to the server
through TCP/IP local loopback. On Windows machines, a single local client can also connect to a database
by sharing inter-process communications memory with the Firebird server. On Linux, even direct I/O to the
database file is possible, but only with the so-called Classic Server – more on this later.

Firebird Server

Firebird server runs on a number of platforms, including:

• Windows NT 4.0, 2000, and 2003 (Server or Workstation editions)

• Windows 95/98 and ME

• Windows XP (Home, Professional and .NET editions)

• Linux, FreeBSD and several other UNIX-like operating systems

• MacOS X (Darwin)

The Firebird Embedded Server is a special variant which contains both the client and the server functionality.
You can ship it with your application, unpack it, and it's ready to roll. You'll learn more about its up- and
downsides later on in this guide.

Firebird clients

A remote workstation or a local client requires only the shared client library – a dynamic link library on Windows
and a shared object on other platforms – and an application program which can pass and receive parameters to
and from the library's interface.

Generally, you would also install a copy of the client library on the host server, for use with several of the
Firebird command-line utilities and/or any server-based management programs you might use. Many of these
utilities can also be run remotely, however. A remote system administrator can manage some of the essential
services provided by these utilities by accessing them through a host service controller process.

For Java connectivity, Firebird provides the JDBC/JCA-compliant Jaybird driver. Client applications written
against Jaybird can run on any Java-enabled platform, even those that don't support Firebird server. The legacy
InterClient Java driver is no longer maintained, due to its severe limitations.

About Firebird

4

Summary of features
Table 2.1. Summary of features

Firebird Feature Description

SQL compliance Firebird conforms to entry-level SQL-92 requirements. It has support for formal,
cascading referential integrity constraints, updatable views, and full, left and right
outer joins. Client applications can link to the Firebird API, a messenger function
library for client-server communication.

The Firebird server supports development of dynamic SQL client applications. It
also ships with a host-language precompiler and in-engine language support for
embedded SQL development in host languages such as C/C++ and COBOL.

Several extended SQL features are also implemented. Some of them (e.g. stored
procedures and triggers, SQL roles, and segmented blob support) anticipate SQL99
extensions.

Multiuser database ac-
cess

Firebird is designed to provide for many clients accessing a single database at the
same time. In their turn, client applications can have active connections to sev-
eral databases simultaneously. Firebird will automatically protect cross-database
transactions through a two-phase commit mechanism. Triggers and stored proce-
dures can post event messages to inform interested clients of specific events in the
database.

User-defined functions User-defined functions (UDFs) can be written and stored on the server machine in
external shared object libraries. Once a UDF is declared to a Firebird database as
an external function, it is available to any client application accessing the database,
as if it were a native function of the SQL language.

This flexibility accounts for the very small footprint of the server engine: Firebird
database application solutions are deployed without the extra cargo of a server that
supports hundreds of unused functions natively in its engine.

Transactions Firebird client applications have full control over the starting, committing, and
rolling back of transactions. Every transaction exists in its own consistent context,
determining isolation from other transactions and resolution of multi-user conflicts
at commit time.

A transaction's uncommitted view of the state of the database is kept consistent
with its initial view and any changes which are made within its own context.

Client applications can isolate multiple tasks in separate transactions simultane-
ously. A single transaction can bridge a task involving an unlimited number of
connected databases, with an automatic two-phase commit mechanism to protect
integrity, should a database become unavailable before the transaction completes.

Multigenerational archi-
tecture

Firebird uses a multi-generational architecture, by which multiple versions of each
data row can be created and stored as necessary if a transaction modifies the row.
In a background thread, extinct versions are garbage-collected and the current and
pending versions are managed, in order to give each transaction a persistent view
and to resolve priorities when update conflicts occur.

About Firebird

5

Firebird Feature Description

The multi-generational architecture of Firebird means that readers never block
writers. Firebird allows any row to be visible to any transaction, even if other
transactions have updates pending for it. Readers may of course see another (old-
er) version of the row than the writer.

The Firebird engine maintains version statistics which it uses, in conjunction with
the isolation and lock response attributes of each transaction, to determine which
transaction gets priority when conflicting updates are requested.

Optimistic row-level lock-
ing

In Firebird, user-initiated locking is unnecessary. The engine locks a row to other
transactions only when a transaction signals that it is ready to update it. This is
known as optimistic row-level locking. This style of locking has great advantages
in increasing throughput and reducing serialisation for client tasks, when compared
with systems that lock rows, or even entire tables, from the moment the transaction
begins.

BLOB filters Firebird provides the capability for the developer to supply filter code for con-
verting stored BLOBs from one format to another. For example, a BLOB filter
could be written to output a text BLOB, stored in RichText format, as XML or
HTML; or to output a stored JPEG image in PNG format. The filters, written in
the developer's language of choice and compiled for the server platform OS, are
stored on the server machine in a shared object library and must be declared to
databases that want to use them, exactly like UDF libraries.

Database administration Firebird comes with various command-line utilities for managing databases and
servers. Thanks to its open source character, Firebird is also abundantly supported
by open source, freeware and commercial GUI database administration utilities.
Using his or her preferred constellation of tools, the database administrator can

• manage server security;
• make and restore database backups;
• perform maintenance tasks;
• produce database and lock manager statistics.

Security Firebird maintains a security database storing user names and encrypted pass-
words. It is located in the root directory of the server installation and controls ac-
cess to the server itself and all databases in its physical domain. The SYSDBA ac-
count has full, destructive privileges to all databases on the server.

Firebird provides the capability to define ROLEs at database level. Within a
database, only SYSDBA and the database owner have full privileges; otherwise, all
privileges must be granted explicitly to individual users and/or roles. It is possible
– and recommended – to define a set of permissions for a role and then grant that
role to specific users as required.

SYSDBA can add and delete users' accounts names and modify the details of an
account, including the password. Passwords, once stored, are not human-readable,
even by SYSDBA.

Physical database paths can be shielded from the client using aliases. Access to
database files, external tables, and UDFs can be restricted to explicitly specified

About Firebird

6

Firebird Feature Description

filesystem trees only – or even tighter – by setting the appropriate parameters in
the configuration file firebird.conf.

The Firebird server process can – and if possible, should – run as a user other
than the system or superuser account (root, Administrator or localsys-
tem). This will limit the damage in the unfortunate event that the server should
be hacked.

Backups and restores Firebird comes with two command-line backup/restore tools, each with its own
specific advantages and limitations.

The gbak utility backs up a database by dismantling it into a compact structure
in which metadata, data and database-level configuration settings are stored sepa-
rately. It also performs some important housekeeping tasks on the database during
the backup process.

The generated backup is not readable as a database file; you need gbak again to
restore it. In restore mode, gbak can create a new file or overwrite an existing
database.

Because of the useful tasks it performs, experienced Firebird programmers often
use a gbak backup-restore cycle to

• erase obsolete record versions;
• change the database page size;
• convert the database from single- to multifile;
• safely transfer a database to another operating system;
• upgrade InterBase or Firebird databases to a newer version;
• make a metadata-only backup in order to create a new, empty database with

the same structure.

Several user-friendly GUI front-ends are available for gbak, both as stand-alone
tools and as utilities within some of the database administration programs. It is also
very simple to set up OS-level scripts, batch files or daemons to perform backups.

A more recent tool by the name of nbackup lacks most of gbak's housekeeping and
compaction features, but has the following advantages:

• Incremental backups, which save time and disk space;
• Backups at hardware speed;
• Backups possible with your own preferred (non-Firebird) tool.

Neither backup tool requires exclusive access to the database. Other clients can
remain connected and perform operations on the database while the backup is in
progress.

Other tools Firebird ships with several other command-line administration tools, including:

isql
An SQL query utility which can run dynamic SQL (DSQL) and several spe-
cialised statements interactively or in batch from a script. This is the tool to
use for quick access to information about your metadata and for running data
definition scripts.

About Firebird

7

Firebird Feature Description

gfix
A database housekeeping and repair kit for minor corruptions. This tool is of-
ten used in combination with some of the utilities in the gbak program for
identifying and recovering damaged data.

gsec
A command-line interface to the security database.

gstat
A utility for printing out the current configuration and statistics of a running
database.

fb_lock_print
A utility for printing out the Lock Manager report on a running database.

Services API Firebird provides a Services API which developers can use to perform a number
of security and management tasks programmatically (and if needed, remotely).
Strictly speaking, the Services API (part of the client library) is the interface to the
Services Manager (part of the server), but the terms are often used interchangeably.

Classic and Superserver architectures
Firebird server comes in two distinct architectures for managing multiple client connections: Superserver and
Classic Server. For Windows, both architectures are included in a single download. For Linux, there are separate
download packages which have either CS or SS in their name, indicating the type of server.

The Classic server starts a separate process for each connection to a database under its control. Each client
is allocated its own database cache buffers. Superserver serves many clients simultaneously within a single
process. Instead of separate server processes for each connection it uses threads of a single process and pools
the database cache buffers for use by all connections.

If you are upgrading from a previous version of Firebird or faced with the choice between Classic and Super-
server, the information listed in the comparison table below will help to explain what the differences are and
how they affect database operations.

The server architecture does not affect the structure of databases or the way client applications work. Firebird
databases built on a Classic server can be operated on by an equivalent Superserver server, and vice versa. The
same client library can connect to either server.

In other words, if you begin by installing the Superserver distribution of Firebird on your Linux host machine
and, later, decide to change to Classic, any applications you wrote for your Superserver-hosted databases will
work unmodified and the databases themselves will continue to behave as they did before.

About Firebird

8

Comparison of characteristics

The table below gives a quick overview of the main differences between Classic and Superserver. These differ-
ences will be discussed in more detail in the subsections that follow.

Table 2.2. Comparison of Classic and Superserver architectures

ARCHITECTUREFEATURE

Classic Superserver

Availability Linux: All Firebird versions

Windows: Firebird 1.5 and higher

All Firebird versions

Executable fb_inet_server(.exe) fbserver(.exe)

Processes Multiple, on demand, one instance per
client connection.

Single server process, each client re-
quest is handled in its own thread.

Lock management gds_lock_mgr process. Implemented as a thread.

Local access on Linux Fast, direct I/O to the database file is
possible. But you can also connect net-
work-style via localhost.

Network-style access only.

Versions 1.x: network-style access only. Versions 1.x: single (!) local connec-
tions can be made using IPC (IPServer).
Network-style local connections are al-
so supported.

Local access on Windows

Firebird 2 and higher: both architectures support safe, multi-
ple local connections on Windows machines through XNET.

Resource use One cache per process. One cache space for all clients.

Multiprocessor support Yes. No. Performance may drop if not prop-
erly configured.

Services Manager + API Partial in Firebird 1.5, full in 1.5.1 and
up.

Full.

Guardian on Windows On Firebird 2 Classic/Win only, a bug
prevents you from using the Guardian if
you run Firebird as an application.

The Guardian functions with all Win-
dows Superservers, whether run as a ser-
vice or as an application.

Guardian on Linux You can't use the Guardian with any
Firebird Classic version on Linux. This
is by design.

The Guardian functions with all Linux
Superservers.

About Firebird

9

Executable and processes

Classic
Runs on demand as multiple processes. When a client attempts to connect to a Firebird database, one instance
of the fb_inet_server executable is initiated and remains dedicated to that client connection for the
duration of the connection.

Superserver
Runs as a single process, an invocation of the fbserver executable. fbserver is started once by the
owning user or by a boot script. This process runs always, waiting for connection requests. Even when no
client is connected to a database on the server, fbserver continues to run quietly. On Linux, the Superserver
process does not depend on inetd; it waits for connection requests to the gds_db service itself.

Lock management

Classic
For every client connection a separate server process is started to execute the database engine, and each server
process has a dedicated database cache. The server processes contend for access to the database, so a Lock
Manager subsystem is required to arbitrate and synchronise concurrent page access among the processes.

Superserver
The lock manager is implemented as a thread in the fbserver executable. It uses inter-thread communi-
cation mechanisms to resolve access issues. Therefore, an external process isn't needed.

Resource use

Classic
Each instance of fb_inet_server keeps a cache of database pages in its memory space. While the re-
source use per client is greater than in Superserver, Classic uses fewer overall resources when the number
of concurrent connections is low.

Superserver
Employs one single cache space which is shared by client attachments, allowing more efficient use and
management of cache memory when the number of simultaneous connections grows larger.

Local access on Linux

Classic
On Linux only, the Classic architecture permits application processes that are running on the same machine
as the database and server to perform I/O on database files directly. Note that this is only possible if the client
process has sufficient filesystem-level access rights to the database as well as some other files. Network-style
access to the local server (via localhost or equivalents) is supported on all systems.

Superserver
You can only connect to local databases via TCP/IP loopback, using localhost or any other host name /
IP number that points back to the local machine. (Many clients may let you get away with omitting the
hostname though, and supply localhost to the server automatically.)

About Firebird

10

Local access on Windows

Classic
In Windows Classic versions prior to Firebird 2, you can only connect to local databases via network loop-
back, using localhost or an equivalent. Firebird 2 and higher support local access through the reliable
XNET protocol, which permits multiple simultaneous connections in a safe way.

Superserver
Firebird 1.5 and earlier Superservers use the IPC (IPServer) protocol for single local connections on Win-
dows. This method is not as fast and certainly not as robust as the direct I/O on Linux Classic. Furthermore,
IPC needs an internal window to exchange messages. As a consequence, local access on these versions is
only available if:

• the Firebird process runs as Localsystem (the default), and

• the configuration parameter CreateInternalWindow has not been set to 0 (you would set this to 0 if
you want to run multiple servers simultaneously).

Firebird 2 uses a different local protocol – XNET – which doesn't suffer from these restrictions, and supports
multiple connections.

Of course if local protocol is disabled you can still connect to any local database via localhost, provided
TCP/IP is available on your system.

Multiprocessor support

Classic
Supports SMP (symmetrical multi-processor) systems. This improves the performance in case of multiple
unrelated connections.

Superserver
No SMP support. In fact, Superserver performance may drop significantly on multiprocessor Windows sys-
tems as a result of processor swapping. To prevent this from happening, set the CpuAffinityMask pa-
rameter in the configuration file firebird.conf.

Services Manager and Services API

Classic
Versions up to and including 1.5 have a partially implemented Services Manager, supporting tasks like
backup/restore, database shutdown etc. over the network. Other service tasks have to be performed locally
using the client tools that come with Firebird. Versions 1.5.1 and up have a full Services Manager, just like
Superserver.

Superserver
The Services Manager, present in all Firebird Superserver versions, allows you to perform management tasks
(backup/restore, database shutdown, user management, stats, etc.) programmatically. You can connect to
the Services Manager over the network and thus perform these tasks remotely.

About Firebird

11

Use of the Firebird Guardian

The Firebird Guardian is a utility which monitors the server process and attempts to restart the server if it
terminates abnormally.

Classic
Due to a bug in the Guardian, it can't be used with Firebird 2 Classic on Windows if run as an application.
If Firebird runs as a service, the Guardian works correctly. Since the Windows 9x–ME line doesn't support
services, you can't use the Guardian with Firebird 2 Classic on those systems. This bug does not exist in
Firebird 1.5 versions.

(The Guardian can't be used at all with Firebird Classic on Linux, but that's by design, not by accident.)

Superserver
The Guardian works fine with Superserver on both Linux and Windows, whether as a service or as an
application.

Which is better?

In abstract terms, neither architecture is a clear winner. One architecture generally outshines the other under
specific workload conditions:

• A single application running on the same machine as the server is faster with the Classic architecture.

• For a Linux application embedded in an appliance, Classic is better, because it provides a single process from
application to disk.

• On a single-processor machine, an application with larger numbers of frequently contending clients is faster
with Superserver, because of the shared cache.

• On SMP machines, small numbers of clients whose data updates do not impact others' tasks work better in
the Classic architecture.

Embedded server

Besides Superserver and Classic, there's Firebird Embedded Server for Windows, which you can download as a
separate package. This is not really a different architecture, but a Firebird client plus Superserver rolled into one
DLL for ease of deployment. Although it has a number of downsides, it may be an attractive option if you want
to include Firebird with your Windows application. More on Embedded Server in the client-server chapter.

About Firebird

12

System Requirements
Firebird makes efficient use of system resources. Both server and clients are modest in their disk space and
memory requirements. Some specific details are provided below.

Server Memory (all platforms)

Table 2.3. Memory Requirements

Firebird server process When there are no connections, the Firebird server uses around 2–4 Mb of memory,
depending on the version.

Client connections Each client connection uses from 115 Kb to several Mb of additional memory on
the server host. The exact load depends on the Firebird version, the structure of
the database and the client characteristics.

Database cache Memory is also needed for database page caching. The default cache size is con-
figurable, in database pages. Superserver shares a single cache among all connec-
tions and increases cache automatically when required. Classic creates an individ-
ual cache per connection.

Other server tasks The server uses additional memory for lock management, in-memory sorting, and
so on. For some tasks the amount can be configured.

Disk space

Disk space requirements vary somewhat according to platform, architecture and Firebird version.

Table 2.4. Approximate Disk Space Requirements

Firebird 1.5.x Firebird 2

Complete server installation 9–12 Mb 12–14 Mb

Client library 350 Kb – 2 Mb * 380 Kb – 2.5 Mb *

Command-line tools 1.5 Mb 1.7–2.7 Mb

Temporary server space Additional disk space is required for temporary storage during operation,
e.g. for sorting. Location(s) and maximum amount of space used can be
configured according to performance demands and the likely volume and
type of data to be handled.

*The “high end” of the client library range is occupied by Linux Classic clients, which contain a complete Firebird engine.

About Firebird

13

In addition, third-party database management utilities will require 1 Mb to several dozen Mb, depending on
which one(s) you choose.

Minimum machine specifications

Note

Wherever Intel processors are mentioned, the equivalent or better AMD processors can also be used.

Table 2.5. Minimum machine specifications

OS Version CPU RAM

Microsoft
Windows

NT 4.0 with Service Pack 6a

Windows 95/98/ME

Windows 2000 (SP1) / 2003

Windows XP

486DX2 66 MHz (Pentium
100 recommended)

16Mb for client

64Mb for multi-client server

Linux 1.0:

Red Hat 6.2, TurboLinux
6.0, SuSE 7.0, Mandrake 7.2

1.5:

glibc 2.2.5, libstdc++ 5.0

RedHat 8.0, Mandrake 9.0,
SuSE 8.0

On SuSE 7.3, first install
libgcc-3.2-44.i586.
rpm and libstdc++-3.2-
44.i586.rpm

1.0: Intel 486

1.5: Pentium

16Mb for client

64Mb for multi-client server

Solaris 2.6 or 2.7 SPARC, UltraSPARC 16Mb for client

64Mb for multi-client server

Solaris ? Intel 32 Mb

64 Mb for multi-client server

Apple Macin-
tosh

Mac OS/X (Darwin) See distribution notes See distribution notes

FreeBSD v.4.x See distribution notes See distribution notes

HP-UX 10.0 See distribution notes See distribution notes

14

Chapter 3

About Clients and Servers
In this chapter we take a look at the essential pieces of client/server systems as they are implemented in Firebird
and examine how applications interact with the client and server.

What is a Firebird client?

A Firebird client is a program, usually written in a high-level language such as C, C++, Delphi, Java, PHP or
Perl, that provides end-user access to the features and tools of the Firebird database management system and to
data stored in databases. The isql interactive SQL utility is an example of a client application.

In the client/server model, applications never touch the database physically. Any application process convers-
es with the server through the Firebird client library which resides on the client workstation. It surfaces a pro-
gramming interface of function call structures known as the Firebird API. This client library must be installed
on every user's workstation. Generally, other layers are also involved in the interface between the application
program and the Firebird client, providing generic or application-language-specific mechanisms for populating
and calling the API functions.

Firebird clients typically reside on remote workstations and connect to a Firebird server running on a host node
in a network. Firebird also supports local connection, that is, a client application, the Firebird client library and
the Firebird server all executing on the same physical box.

Firebird clients need not run on the same type of hardware and/or operating system as the server they connect
to. It is quite common to have a number of Windows 98 or XP workstations talking to a server that runs under
Windows NT, 2000 or 2003, or any of several flavours of UNIX or Linux.

About Clients and Servers

15

Figure 3.1. The Firebird client/server model

The Firebird client library
The Firebird client library provides an Application Programming Interface (API) with functions for connecting
to servers and working with databases. The library functions communicate with the server(s) using a dedicated
Firebird client/server protocol that sits on top of the general network protocol provided by the OS.

All client applications and middleware must use the API in some way to access Firebird databases. The Fire-
bird API is backwardly compatible with the InterBase API. The InterBase API Guide (available at http://www.
ibphoenix.com/downloads/60ApiGuide.zip) contains extensive documentation on the use the API in applica-
tions. Additional features available in the Firebird API are documented in the Firebird release notes.

Client filenames

The Firebird client library files are fbclient.dll (Windows), libfbclient.so (Linux network client)
and libfbembed.so (Linux local client with embedded engine, Classic only). In order not to break certain

http://www.ibphoenix.com/downloads/60ApiGuide.zip
http://www.ibphoenix.com/downloads/60ApiGuide.zip

About Clients and Servers

16

existing applications, a copy of fbclient.dll with the old name gds32.dll can be installed on Windows
machines. On Linux, legacy libgds* symlinks are installed automatically.

The server
The Firebird server is a program that runs on a machine with which client workstations can communicate by way
of a network. Clients connect to databases physically located on this server host machine. The same machine
that hosts the executing Firebird server process must host the Firebird databases in its own storage space. Only
the server process has direct, filesystem-level access to the database files. The server is fully network-enabled,
serving multiple connections simultaneously, in response to requests from other nodes in the network. If the
network runs under TCP/IP protocol, the scope of the network is virtually limitless.

In the Superserver architecture, the server process is multi-threaded. In Classic, a new process is started for
each connection.

Server tasks

The server's job is to

• regulate access by transactions to individual sets of data;
• ensure that each transaction gets and keeps a consistent view of the permanently stored data which it has

requested through the client;
• receive requests to modify or delete a row and either:

- grant a transaction exclusive write access to the row, or
- deny access if another transaction already has a write pending;

• maintain the statistics for each database;
• maintain and refer to the metadata for each database, in order to manage transactions, data and “house-

cleaning”.

Clients' requests result in the server performing tasks such as

• creating new databases;
• creating new data structures inside databases;
• validating and compiling source code for procedures;
• searching tables for data matching provided criteria;
• collating, sorting and tabulating sets of data;
• passing sets of data back to the requesting client;
• modifying the values of data;
• inserting new data into tables;
• removing (deleting) data;
• executing compiled procedures;
• routing messages to clients.

Multiple servers

Starting at version 1.5, you can have multiple Firebird servers running on the same machine. Firebird 1.5 servers
can also coexist with a Firebird 1.0 or InterBase server. Some extra configuration steps are required though.

About Clients and Servers

17

One thing to be aware of is that Firebird 1.5.n under Windows needs the CreateInternalWindow configu-
ration parameter to be set to 0 in order to run multiple servers. As a side effect, the local connection protocol is
disabled (you can still connect to local databases via localhost though). This limitation no longer exists in
Firebird 2, and the CreateInternalWindow parameter has been removed in that version.

Server filenames

Server binaries on Windows are called fbserver.exe (Superserver) and fb_inet_server.exe (Classic).
On Linux, the same names are used, but without the .exe extension.

Client and server combined:
Firebird Embedded Server

Embedded server on Windows

The Windows Embedded Server is a Superserver engine plus client rolled into one library, called fbembed.
dll. It is available as a separate download package. The embedded server (introduced with Firebird 1.5) was
specifically designed to facilitate deployment of applications that ship with a Firebird server included. Installa-
tion is just a matter of unpacking the DLL and a few other files to the desired location. The security database
is not used at all: anyone can connect to any database, as long as the user running the application has filesys-
tem-level access rights to the database(s) in question.

You can have multiple embedded servers running at the same time, and you can have multiple apps connecting
to the same embedded server. Having a regular server already running isn't a problem either. However, an
embedded server locks a database file for its own exclusive use after successful connection. This means that you
cannot access the same database from multiple embedded server processes simultaneously (or from any other
servers, once an embedded server has locked the file).

The embedded server has no facility to accept any network connections. Only true local access is possible, with
a connect string that doesn't contain a host name (not even localhost).

Needless to say, this is not for your regular client-server database usage, as it bypasses a lot of security features.
It's using Firebird as a desktop database system.

Note

A Firebird embedded server DLL can also be used as a network client. That is, if a regular Firebird server
is listening for connections on the target computer, you can connect to databases on that system using a net-
work-style connect string like inca:C:\School\Databases\Pupils.fdb.

This also implies that if a regular server is active on your local computer, you can connect to local databases
through that regular server with your embedded server as a client using the “localhost:” syntax. This may
seem contradictory to what has been said before about the absence of network support, but bear in mind that
if you connect to localhost (or any other host), you are not using the embedded server; you're only using
the client part of fbembed.dll to connect to another server. You'll have to provide a valid user name and
password for this to work.

About Clients and Servers

18

Embedded server deployment

First, download the Embedded server kit from SourceForge. It's typically named Firebird-n.n.n.
xxxx_embed_win32.zip, with n.n.n.xxxx the Firebird version and build number.

After unzipping, you'll find the embedded server fbembed.dll in the root directory of the package, along with
some other files. Additionally, there are three subdirectories doc, intl and udf.

To make your application work with the embedded server:

1. Copy fbembed.dll into your application directory. Rename it to fbclient.dll or gds32.dll, de-
pending on what your application expects as a Firebird client filename. Many applications still look for gds
32.dll. Firebird command-line tools like isql and gbak – which you can also run against the embedded
server – want fbclient.dll. You can also make copies with both names.

2. Also copy firebird.msg and ib_util.dll to your application directory. Copy aliases.conf if
your application uses aliases to connect. The configuration file firebird.conf is only needed if you
want to change the Firebird root directory; this will be discussed later.

3. For Firebird 2 or higher, copy the icu*.dll libraries too.

4. From the intl and udf directories, copy whatever your application or databases may need to same-named
folders under your application directory.

5. Now if you run your application it will use the embedded server DLL to connect to any local database
you desire, provided that the Windows user who runs the application has sufficient access rights to the
database file(s) in question! Any combination of user name and password is accepted, as long as neither
is an empty string (a space is OK though).

The most important benefit of all this is that you can easily pack the Firebird Embedded files with your applica-
tion and have them installed or unzipped at your users' computers without having to perform a separate Firebird
install there (with all the additional worries of sufficient privileges, possible interference with already present
Firebird or InterBase servers, etc. etc.). You can also have several embedded server versions (say 1.5.3 and
2.0) running on the same computer without the need for special configuration steps to keep them out of each
other's way.

Note

Please note that, even though the security database is bypassed, SQL privileges – specified in the database itself
– still apply: if you connect as Firebird user ZIGGY and ZIGGY doesn't have access to table STARDUST, you
won't get into that table. This is not as worrying as it seems, because you can connect as any user you like,
including SYSDBA, with a dummy password.

Placing the Firebird files elsewhere

By default, Firebird Embedded Server considers the folder that fbembed.dll lives in (under whatever name)
as the Firebird root directory. In the setup described above, this is your application directory. You may want
to place the Firebird files somewhere else, so as not to clutter your application directory. To do this, you must
tell the server where to look for them.

About Clients and Servers

19

Let's say you want the Firebird files to reside in a folder called D:\FbEmbedded:

1. Copy firebird.conf to your application directory and edit the RootDirectory parameter like this:

RootDirectory = D:\FbEmbedded

Alternatively, you may set the FIREBIRD environment variable to achieve the same. If both the configura-
tion file parameter and the FIREBIRD envar are present, the latter takes precedence. Warning: the FIRE-
BIRD environment variable will be picked up by every Firebird server on the system (embedded or not) at
startup, and override their registry settings and configuration file parameters. So use it with care, if at all.

2. Copy/move the following items to D:\FbEmbedded:

• firebird.msg
• aliases.conf (if used)
• the intl and udf subdirs plus contents (in so far as needed)

3. The following files however must be left in your application's directory:

• Any and all copies/renames of fbembed.dll
• firebird.conf
• ib_util.dll
• for Firebird 2 and up: the icu*.dll libraries

Embedded server on Linux?

The Linux Classic server comes with a client library called libfbembed.so which is used for local connec-
tions. This library contains a full Firebird engine, which explains why it's so much bigger than the Superserver
client library. Local connections through this library are part of the user application process, not of a separate
server process. Therefore, the user of the library must have filesystem-level access rights to the database – just
as with Windows Embedded. So yes, this is a true embedded server.

There are also some differences. First, Linux Classic doesn't require an exclusive lock on the databases it opens.
The database remains accessible from other clients. A further – very important – difference is that Linux Classic
validates every login against the security database: no connections with phony user names or passwords here!
Finally, you can't just ship libfbembed.so with your application and use it to connect to local databases.
Under Linux, you always need a properly installed server, be it Classic or Super.

Application development
Once a database has been created and populated, its information can be accessed through a client application.
Some applications – such as the Firebird isql tool, EMS SQL Manager, IB_SQL, IBAccess, Database Work-
bench, FlameRobin and IBOConsole – provide the capability to query data interactively and to create new meta-
data.

Any application developed as a user interface to one or more Firebird databases will use the SQL query language,
both to define the sets of data that can be stored and to pass requests to the server about rows it wants to update,
insert into or delete from. SQL statements also convey the values which the application wants to be applied
to those rows.

About Clients and Servers

20

Firebird implements a set of SQL syntaxes which have a high degree of compliance with the recognised SQL-92
and SQL-99 standards. The Firebird API provides complete structures for packaging SQL statements and the
associated parameters, as well as for receiving the results.

Embedded SQL in Firebird applications

Firebird provides the capability to embed SQL statements in applications written in C/C++ and some other pro-
gramming languages. The code is then passed through gpre, the pre-processor, which substitutes the embedded
SQL statements with equivalent host language code that calls functions in Firebird's client API library. The gpre
pre-processor generates a file that the host language compiler can compile.

A special, extra subset of SQL-like source commands is available for this style of application, which are pre-
processed into internal macro calls to the API. Known as Embedded SQL (ESQL), it provides a simpler, high-
level language syntax for the programmer, that gpre can interpret and re-code according to the more complex
structure of the equivalent API calls.

Note

The InterBase Embedded SQL Guide (http://www.ibphoenix.com/downloads/60EmbedSQL.zip) provides ex-
tensive documentation on this subject.

Predefined vs. dynamic queries

Some queries have to be run in exactly the same form every time they are needed. Queries like this are good
candidates for embedding in the host language and pre-processing by gpre. The pre-processor turns them into
API function calls, giving a somewhat better performance than SQL that has to be interpreted at runtime.

But many applications need to build queries that are at least partially dependent on information provided by the
user – freely entered in a text box, or selected from a list of options. This is called Dynamic SQL or DSQL; that
is, SQL code whose form is not (or not exactly) known at design time. DSQL can be embedded and preprocessed
too, but some additional requirements and restrictions apply. More on this – again – in the InterBase Embedded
SQL Guide.

Delphi and C++ data access components provide properties and methods to analyse and parse DSQL request
statements and manage the results passed back. Applications that use ODBC or other generic interfaces always
work with DSQL statements, even if the user doesn't always see them. Query-by-example and other visual query
tools for instance provide the user with a convenient, easy to use, and often “SQL-free” interface to extract,
modify or delete data from the database. Yet the underlying code translates the user's input into DSQL statements,
which are subsequently passed to the ODBC (or other) layer.

Component interfaces provide methods and properties for building and preparing SQL template statements,
allowing you to use placeholders for value criteria. At run-time, the application supplies input parameters of the
appropriate data type to complete the statement. Provision is made also for retrieving output parameters from
statements that return results after they are executed.

Note

Of course the use of data access components isn't limited to dynamic SQL. You can also store static SQL strings
– known at design time – in them.

http://www.ibphoenix.com/downloads/60EmbedSQL.zip

About Clients and Servers

21

RAD environments and component suites

With the rise of rapid application development (RAD) tools in the past decade, the encapsulation of the API
functions in suites of components presents a variety of attractive application development options for Firebird
developers.

The Borland Database Engine (BDE)

Borland markets “enterprise versions” of a number of integrated development tools – Delphi, Kylix, C++Builder,
JBuilder and some older products – which can use the proprietary Borland Database Engine and native SQL
Links InterBase drivers as a “black box” middleware layer to make InterBase and, latterly, Firebird databases
behave like desktop databases. BDE version 5.2 and its associated InterBase driver, which first shipped with
Delphi 6E, supports both Firebird and InterBase version 6, although it has known bugs affecting the Dialect 3
date and time data types.

Because the BDE's purpose is to surface a generic, database-vendor-independent, client-centered data access
layer to the IDE tools, it flattens out the differences between a wide range of different database systems. Hence,
it limits the capability of applications to exploit the best features of Firebird, particularly multiple transactions
per connection, control of transaction aging and concurrency control.

The BDE can be useful where you need to develop an application that might be used with a choice of back-ends,
of which Firebird is only one. Be warned however that people have reported problems with Firebird database
access via the BDE, and these are likely to increase in number and severity as Firebird continues to move further
away from InterBase.

SQLDirect

SQLDirect is a shareware, lightweight replacement for the BDE. It supports Firebird at least up to and including
version 1.5. Visit http://www.sqldirect-soft.com for more information and free trial versions.

DBExpress and Datasnap

DBExpress and Datasnap were introduced in later versions of the Borland tools to provide alternative generic
interfaces to databases. They replace the BDE by moving its functionality into expanded native drivers for
supported databases. Like the BDE, they do not support multiple concurrent transactions. They are of especial
use where a data interface is required that is independent of the idiosyncrasies of different database management
systems. The InterBase native drivers should provide adequate support for Firebird databases where optimising
client/server performance is not high among the objectives.

Direct-to-API Components

In response to the shortcomings of the BDE, a number of component suites have become available for Delphi
and Borland C++Builder that bypass the BDE layer completely and encapsulate the Firebird API directly:

IBObjects
IB Objects is a rich set of visual and non-visual database components that has been stable since 1997. It offers
two BDE-free suites for data access; one compatible with the native Delphi and C++ Builder TDatasource

http://www.sqldirect-soft.com

About Clients and Servers

22

and visual controls, the other completely independent of the Delphi data access architecture and supplied
with its own visual controls.

http://www.ibobjects.com

FIBPlus
FIBPlus is another well-known and stable suite for Delphi and BCB. Developed from Gregory Deatz's
FreeIBComponents suite, it offers a connectivity based on TDataset. It doesn't include any visual compo-
nents, but it can work perfectly together with the Borland visual database classes, as well as with third-party
visual data-aware components.

http://www.devrace.com/en/fibplus/

ZeosLib
ZeosLib is a set of free, open-source database connectivity components for Delphi, FreePascal/Lazarus,
Kylix and C++ Builder. It supports a number of database systems, including Firebird. Because the ZeosLib
components are based on TDataset, you can use them together with the Borland visual database controls.

http://zeos.firmos.at/portal.php

IBX (InterBase Express)
IBX was also developed from the FreeIBComponents. Its TDataset-based data access components were
purchased for developing as a proprietary product by Borland. Components encapsulating the new Services
API were added. It was left unfinished in 1999. The IBX source code was opened under the InterBase Public
License in 2000 and it continues to be developed as an open source project. Borland distributes versions of
IBX with some Delphi, Kylix and C++ Builder versions.

Caution

Since InterBase and Firebird are diverging more and more, and Borland has (quite understandably) no
intention to keep IBX Firebird-compatible, you should probably not use it with Firebird versions 1.5 and
higher (although most features will still be supported).

UIB (Unified InterBase)
This is a set of non-visual components for Delphi, BCB, Kylix, Lazarus and FPC, supporting Firebird,
InterBase and Yaffil. A ready-to-use SQL monitor (Windows only) is also available:

http://www.progdigy.com/modules.php?name=UIB

The UIB components are also contained in the JEDI Visual Component Library (JVCL):

http://homepages.borland.com/jedi/jvcl/

Both UIB and the JVCL are freely available open-source products.

http://www.ibobjects.com
http://www.devrace.com/en/fibplus/
http://zeos.firmos.at/portal.php
http://www.progdigy.com/modules.php?name=UIB
http://homepages.borland.com/jedi/jvcl/

About Clients and Servers

23

Other connectivity components and drivers

Microsoft “open connectivity”

Third-party ODBC and OLE-DB drivers are available for Windows programmers using Microsoft and other
vendors' programming tools. The Firebird ODBC driver development page is at http://www.firebirdsql.org/
index.php?op=devel&sub=odbc.

Java

A pure Java Type 4 JDBC driver called Jaybird is developed within the Firebird project. Jaybird is compliant
with both the new JCA standard for application server connections to enterprise information systems and the
established JDBC standard.

Note

Firebird has abandoned re-implementation of the Borland InterClient and Interserver platform-independent
client layers.

Official documentation and download links for Jaybird are at http://jaybirdwiki.firebirdsql.org.

.NET

The Firebird ADO.NET Data Provider, developed as a Firebird subproject, re-implements the client API func-
tions in C#. Consequently, .NET developers only need the data provider to talk to a Firebird server; there's
no need to install a regular Firebird client. Home page: http://www.firebirdsql.org/index.php?op=devel&sub=
netprovider.

API applications

The Firebird client program supports two discrete application programming interface (API) modules. The most
important is the core API, through which all database work is performed. A much smaller API module, the Ser-
vices API, provides functions for accessing various command-line and other utilities from application programs.
Developers can write high-level programming or script language applications that populate the data structures
and call the API functions directly.

The Firebird core API

Programmers who want to use the core API have to write code for allocating and populating the data structures
that provide the communication layer between the client library and the server. Interactive SQL clients, com-
ponent interfaces and embedded SQL “hide” these structures from the programmer by encapsulating them in
their own higher level interfaces. Writing code that calls the API functions directly can be more powerful and
flexible, with the following benefits:

http://www.firebirdsql.org/index.php?op=devel&sub=odbc
http://www.firebirdsql.org/index.php?op=devel&sub=odbc
http://jaybirdwiki.firebirdsql.org/
http://www.firebirdsql.org/index.php?op=devel&sub=netprovider
http://www.firebirdsql.org/index.php?op=devel&sub=netprovider

About Clients and Servers

24

• Memory allocation control
• No precompiling necessary
• Access to transaction handles and options
• Full access to error messages

Core API function categories

Based on their operation targets, we can divide the API functions into the following categories:

• Database connection control
• Transaction control
• Statement execution
• Blob functions
• Array functions
• Security functions
• Informational functions
• Type conversions

The Services API

The opened InterBase 6.0 code from which Firebird was developed surfaced for the first time an application
programming interface (API) providing a function call interface to certain server activities such as backup/re-
store, statistics and user management. Many of these calls provide programming interfaces to the code in the
command-line tools. A few lower-level server functions are included as well, some of which overlap functions
already available in the core API.

Important

Before Firebird 1.5, the Services API was only available with Firebird Superserver. Support for the entire
Services API in Classic Server versions was completed in Firebird 1.5.1.

Borland's InterBase Express (IBX) components include a subset – known as the Service components – encap-
sulating access to services API calls from some versions of their Delphi, Kylix and C++Builder development
environments. Be aware however that IBX does not officially support Firebird. The higher your Firebird version,
the more chance of incompatibilities and errors if you use IBX.

IBPP

IBPP is a C++ interface to the Firebird API. It is a class library written in “pure” C++ and hence not dependent on
any specific programming environment, component set or even OS. You can use it anywhere you want Firebird
connectivity in your C++ programs.

IBPP was created and is maintained independently of the Firebird project. It is available for free and comes with
its own very liberal license. The IBPP home page is at http://www.ibpp.org.

http://www.ibpp.org

About Clients and Servers

25

Server-side programming

Among Firebird's powerful features for dynamic client/server application programming is its capability to pre-
compile source code on the server, storing the object code right inside the database in most cases. Such proce-
dures and functions are executed completely on the server, optionally returning values or data sets to the client
application. Firebird provides three styles of server-side programming capability: stored procedures, triggers
and user-defined functions (UDFs).

Stored procedures

Firebird's procedural language (PSQL) implements extensions to its SQL language, providing conditional logic,
flow control structures, exception handling (both built-in and user-defined), local variables, an event mechanism
and the capability to accept input arguments of almost any type supported by Firebird. It implements a powerful
flow control structure for processing cursors which can output a dataset directly to client memory without the
need to create temporary tables. Such procedures are called from the client with a SELECT statement and are
known to developers as selectable stored procedures. Procedures that don't return a dataset (although they may
return result variables) are called executable stored procedures; they are called with EXECUTE PROCEDURE.

Stored procedures can call other stored procedures and can be recursive. All stored procedure execution, includ-
ing selection of data sets from procedures and embedded calls to other procedures, is under the control of the
single transaction that calls it. Accordingly, the work of a stored procedure call will be cancelled totally if the
client rolls back the transaction.

Triggers

Triggers are special procedures created for specific tables, for automatic execution during the process of com-
mitting DML work to the server. Any table can have any number of triggers to be executed before or after
inserts, updates and deletions. Execution order is determined by a position parameter in the trigger's declaration.
Triggers have some PSQL extensions not available to regular stored procedures or to dynamic SQL, most no-
tably the context variables OLD and NEW which, when prefixed to a column identifier, provide references to the
existing and requested new values of the column. Triggers can call stored procedures, but not other triggers.

Work performed by triggers will be rolled back if the transaction that prompted them is rolled back.

PSQL limitations

Stored procedures and triggers can not start transactions, since they are under transaction control themselves.

PSQL does not allow the execution of DDL (Data Definition Language) statements: it is strictly meant to operate
on data, not on the structure of your database. Although you can circumvent this limitation with the EXECUTE
STATEMENT syntax introduced in Firebird 1.5, it is generally considered unwise to do so. (Just because we give
you a spade, it doesn't mean that you have to dig your own grave.)

About Clients and Servers

26

User-defined functions

By design, in order to preserve its small footprint, Firebird comes with a very modest arsenal of internally-defined
(native) data transformation functions. Developers can write their own very precise functions in familiar host-
language code such as C/C++, Pascal or Object Pascal to accept arguments and return a single result. Once an
external function – UDF – is declared to a database, it becomes available as a valid SQL function to applications,
stored procedures and triggers.

Firebird supplies two libraries of ready-to-use UDFs: ib_udf and fbudf. Firebird looks for UDF li-
braries in its own UDF subdirectory or in other directories specified in the Firebird configuration file.
In Firebird 1.5 and upward this is done with the UDFAccess parameter; in earlier versions with
external_function_directory.

Note

In versions prior to 1.5 the fbudf library is only available on Windows.

Multi-database applications
Firebird applications can work with several databases at the same time through the client library – something
that not all relational database systems allow. Tables from separate databases can not be joined to return linked
sets, but cursors can be used to combine information.

If consistency across database boundaries is required, Firebird can manage output sets from querying multiple
databases inside a single transaction. Firebird implements automatic two-phase commit when data changes oc-
cur, to ensure that changes cannot be committed in one database if changes in another database, within the same
transaction context, are rolled back or lost through a network failure.

27

Appendix A:
Document history

The exact file history is recorded in the manual module in our CVS tree; see http://sourceforge.net/cvs/?group_
id=9028

Revision History
0.0 2002 IBP Written and published by IBPhoenix.

1.0 2005 IBP Donated to Firebird Project by IBPhoenix.

2.0 12 Nov 2006 PV Preface added.
About Firebird: Updated to 1.5 and 2.0. Rewrote/corrected/extended
a number of sections. Added section on Foundation. Introduced Em-
bedded Server. Introduced aliases and (other) security features. In-
troduced nbackup. Introduced Services Manager + API. Added rows
Availability, Local access on Windows, Multiprocessor support, Ser-
vices Manager + API, Guardian on Windows and Guardian on Lin-
ux to the Classic-Super table. Added same-named sections to the Clas-
sic-Super discussion following the table. Explained bulkiness of Linux
Classic client. Added note on AMD processors.
About Clients and Servers: Updated to 1.5 and 2.0. Rewrote/correct-
ed/extended a number of sections. Added sections on client filenames,
multiple servers and server filenames. Added major section on embed-
ded servers. Introduced SQLDirect. Warned against use of IBX with
higher Firebird versions. Introduced UIB and JVCL. Introduced .NET
data provider. Introduced IBPP. Explained the concept of executable
stored procedures. Added section on PSQL limitations.
Document History added.
License Notice added.

2.0.1 31 Dec 2006 PV About this book :: More documentation: Changed text and hyperlink.
About Firebird: Changed title of memory requirements table.
About Clients and Servers: Added ZeosLib to Direct-to-API Compo-
nents section.
Gave all tables and figures an ID to make their URLs persistent across
builds.

2.0.2 16 Jul 2007 PV About this book :: Summary of features: Gave table a “keep-
together=auto” PI, necessary with FOP 0.93+
About Clients and Servers :: Client and server combined: Firebird Em-
bedded Server: Added titleabbrev. Also corrected the first Note, which
incorrectly stated that Fb2's fbembed.dll can't be used as a network
client (altered 1st sentence, dropped last). Put “localhost:” in a
quote in that same note.
License notice: Updated copyright year.

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

28

Appendix B:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/man-
ual/pdl.html (HTML).

The Original Documentation is titled Using Firebird.

The Initial Writer of the Original Documentation is: IBPhoenix Editors.

Copyright (C) 2002–2005. All Rights Reserved. Initial Writer contact: hborrie at ibphoenix dot com.

Contributor: Paul Vinkenoog - see document history.

Portions created by Paul Vinkenoog are Copyright (C) 2006–2007. All Rights Reserved. Contributor contact:
paul at vinkenoog dot nl.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Using Firebird
	Table of Contents
	About this book
	Work in progress!
	Origins
	More documentation

	About Firebird
	Firebird's origins
	The Firebird Foundation
	Overview of Features
	Firebird Server
	Firebird clients
	Summary of features

	Classic and Superserver architectures
	Comparison of characteristics
	Executable and processes
	Lock management
	Resource use
	Local access on Linux
	Local access on Windows
	Multiprocessor support
	Services Manager and Services API
	Use of the Firebird Guardian

	Which is better?
	Embedded server

	System Requirements
	Server Memory (all platforms)
	Disk space
	Minimum machine specifications

	About Clients and Servers
	What is a Firebird client?
	The Firebird client library
	Client filenames

	The server
	Server tasks
	Multiple servers
	Server filenames

	Client and server combined: Firebird Embedded Server
	Embedded server on Windows
	Embedded server deployment
	Placing the Firebird files elsewhere

	Embedded server on Linux?

	Application development
	Embedded SQL in Firebird applications
	Predefined vs. dynamic queries
	RAD environments and component suites
	The Borland Database Engine (BDE)
	SQLDirect
	DBExpress and Datasnap
	Direct-to-API Components

	Other connectivity components and drivers
	Microsoft “open connectivity”
	Java
	.NET

	API applications
	The Firebird core API
	Core API function categories
	The Services API
	IBPP

	Server-side programming
	Stored procedures
	Triggers
	PSQL limitations
	User-defined functions

	Multi-database applications

	A. Document history
	B. License notice

