How to work with Blobs

Counter: 14083
Published: 2007-01-29 16:55:38

Working with BLOB-fields in client InterBase/Firebird applications based on FIBPlus components July,
2006 by Sergey Vostrikov and Serge Buzadzhy

Introduction

There can be advantages in storing non-structured data in your database, such as images, OLE-objects, sounds,
etc. For this you will need to use a special data type - BLOB. Before illustrating examples of FIBPlus BLOB-fields,
we will consider how server works with BLOBs. It is important to know and remember that in contrast to other
fields, BLOBs data are not stored in the table record. Table records store only BLOB_ID, whereas BLOB body is
kept in separate database tables. Special IB API functions provide access to the BLOB body. This feature
enables developers to store data with undefined size in BLOB fields. Using FIBPlus you do not need to call these
functions yourself, as FIBPlus takes care about everything. Anyway, it is useful to know what's going on "behind
the curtain”.

We will now show you how to use BLOB-fields, using the following table as an example:

CREATE TABLE BIOLIFE (
ID INTEGER NOT NULL,
CATEGORY VARCHAR (15) character set WIN1251 collate WIN1251,
COMMON_NAME VARCHAR (30) character set WIN1251 collate WIN1251,
SPECIES NAME VARCHAR (40) character set WIN1251 collate WIN1251,
LENGTH CM DOUBLE PRECISION,
LENGTH IN DOUBLE PRECISION,
NOTES BLOB sub_type 1 segment size 80,
GRAPHIC BLOB sub_type 0 segment size 80);

Using TpFIBDataSet for work with BLOB-fields

J¥Working with Blob =10 x|
| i | COMMOM_MAME |SPECIES_MAME Iﬂ f
. l Clawn Triggerfish Balliztoides conzpicillum

.1 Datas n:nurn:;ﬂﬁﬁét-ahasﬂ Red Emperor Lutianus sebas

o 3 Wrasse Giant kac EEWSSE Cheilinuz undulatus :
: 4 Angelfizh Blue i 4o+) Pomacanthus navarchus -|
. —4 | | pFIBTranzaction LIJ .

S =

Picture. 1. An application form for work with BLOB-fields.
In this example we are using a standard component DBIMage1: TDBImage to show images of the fish stored in
(GRAPHIC). Queries for work with BLOB-fields look similar to queries for standard field types:

SelectSQL:
SELECT * FROM BIOLIFE

UpdateSQL:

UPDATE BIOLIFE SET

ID=?NEW ID,
CATEGORY=?NEW_CATEGORY,
COMMON_NAME=?NEW_COMMON_NAME,
SPECIES NAME=?NEW SPECIES NAME,
LENGTH CM =?NEW LENGTH CM ,
LENGTH IN=?NEW LENGTH IN,
NOTES=?NEW NOTES,
GRAPHIC=?NEW GRAPHIC

WHERE ID=?0LD ID

InsertSQL:

INSERT INTO BIOLIFE(
ID,

CATEGORY,
COMMON_NAME,
SPECIES NAME,
LENGTH _CM ,
LENGTH_IN,

NOTES,

GRAPHIC

)

VALUES (

?NEW_ID,
?NEW_CATEGORY,
?NEW_COMMON_NAME,
?NEW_SPECIES NAME,
?NEW _LENGTH _CM
?NEW_LENGTH_IN,
?NEW_NOTES,

?NEW GRAPHIC

)

DeleteSQL:
DELETE FROM BIOLIFE
WHERE ID=?0LD ID

RefreshSqQL:
SELECT * FROM BIOLIFE
WHERE

ID=7?0LD_ID

Reading nuances:

This is the first "tricky" nuance. «<SELECT * FROM BIOLIFE» execution does not read data from BLOB field to the
client. It reads only BLOB_ID. Then the following happens "behind the curtain": The DBImage1 component wants
to show the field contents of the first record. It refers to pFIBDataSet1 in order to get these contents. Then the
component insensibly addresses to the server through IB API functions to get the BLOB body. For this it uses a
field Blob_ID from the FIRST record. So you should understand that in the example you fetched to the client only
the BLOB field of the first record. On record scrolling in TpoFIBDataSet, DBImage1 will refer to data of other
records and these references will be sent to the server.

Modification nuances:

BLOB-fields in TFIBDataSet are represented by TBlobField descendants, and thus inherit four special
modification methods: LoadFromFile, LoadFromStream, SaveToFile and SaveToStream.

LoadFromFile is used to save data from the external file to the field, LoadFromStream saves any TStream object.

For example if you want to save an image from the external file in a BLOB-field, write the following handler:

procedure TMainForm.OpenBClick(Sender: TObject);
begin
if not OpenD.Execute then
exit;
pFIBDataSetl.Edit;
TBlobField(pFIBDataSetl.FieldByName('GRAPHIC')).LoadFromFile(OpenD.FileName);
pFIBDataSetl.Post;
end;

Pay attention to an important thing: before setting the BLOB-field value you should set pFIBDataSet to the data
editing mode. In this case it is pFIBDataSet1.Edit. After loading the data you need to save changes by calling
Post.

The second important thing is setting the TBlobField field type. Without this operation FieldByName will return the
TField object which lacks necessary methods.

Besides special LoadFromXXX methods, you can also use such simple methods as
FieldByName(...).AsString:='asfdsafsadfsad'; to modify BLOB fields.

We can save the value of the BLOB-field to a file or TStream by using SaveToFile and SaveToStream methods:

procedure TMainForm.SaveBClick(Sender: TObject);

begin
if not SaveD.Execute then
exit;
if not pFIBDatasetl.FieldByName('GRAPHIC').IsNull then
begin

TBlobField(pFIBDataSetl.FieldByName('GRAPHIC')).SaveToFile(SaveD.FileName);
end;
end;

Clearing the contents of the field is the same as any other field, i.e:

procedure TMainForm.ButtonlClick(Sender: TObject);
begin
pFIBDataSetl.Edit;
pFIBDataSetl.FieldByName('GRAPHIC').Clear;
pFIBDataSetl.Post;
end;

Sometimes you need to know whether the BLOB-field is empty. Using such visual components as TDBImage you
cannot get this information for sure. Of course you can make an empty image and save it to BLOB. But you won't
know whether there is an image in a BLOB-field. You can also write OnDataChange event handler for the
DataSource1: TDataSource component:

procedure TMainForm.DataSourcelDataChange(Sender: TObject; Field:
TField);
begin
CheckBox1.Checked := pFIBDataSetl.FieldByName('GRAPHIC').IsNull;
end;

This event is called i.e. when navigating on DBGrid1, so you always know whether the field is empty. And what's
going on "behind the curtain"? What's happening when the record with the BLOB-field is being modified?

Variant 1. If the BLOB-field has not been edited, the UPDATE SQL parameter gets the old BLOB_ID. The BLOB-
field contents are not sent to the server.

Variant 2. If the BLOB-field has been modified, several operations will be required for writing the new contents. At
first IB API functions isc_create_blob2, isc_put_segment, isc_close_blob will save a NEW BLOB body into a
database. The client application will know and remember BLOB_ID for this new BLOB. Secondly UPDATE SQL
receives the new BLOB_ID, and UPDATE is executed. Thirdly (it's VERY "TRICKY" NUANCE) the server

CHANGES the fetched BLOB_ID in the modified record, so BLOB_ID sent by the client application cannot be
used for the second time.

We will make several practical conclusions from the above-mentioned nuances. At first you must use
poRefreshAfterPost for TpDataSet where you will modify BLOB-fields (if you have two transactions and no
AutoCommit, set the "RefreshTransactionKind" dataset property to "tkUpdateTransaction"). In this case FIBPlus
will get BLOB_ID changed by the server and place it instead of the invalid BLOB_ID. Secondly you see that the
BLOB-field body is sent to the server BEFORE record modification. If the server will block the recurrent record
modification (e.g. by constraints), you will need to send the BLOB body anew for every new modification. This will
increase network traffic and database size. That's why we recommend that you separate two processes: modify
all non BLOB-fields in one query, and send all BLOB-field changes in a separate query after these modifications
are a success.

Note: FIBPIlus has a special option for TpFIBDataSet with modifying query auto generation. This option enables
developers to separate the two processes: AutoUpdateOptions. SeparateBlobUpdate.

Using TpFIBQuery with BLOBs

If you use TpFIBQuery with BLOB-fields you can use either files or streams (TStream). For example we can write
the following procedure, which will save all table images to files:

pFIBQuery.SQL: SELECT * FROM BIOLIFE

procedure TMainForm.Button2Click(Sender: TObject);
var
Index: Integer;
begin
with pFIBQueryl do
begin
ExecQuery;
Index := 1;
while not Eof do
begin
FN('GRAPHIC').SaveToFile(IntToStr(Index) + '.bmp');
Next;
inc(Index);
end;
Close;
end;
end;

Note: The FN method is the short form of FieldByName.

The following code gets all records from the BIOLIFE table, then iterates through them, saves GRAPHIC field
value into a file using the SaveFile stream and fetches the next record using the Next method. In the same way
we could set the value of the BLOB-parameter:

pFIBQuery.SQL: INSERT INTO BIOLIFE (GRAPHIC) VALUES (?GRAPHIC)

procedure TMainForm.Button2Click(Sender: TObject);
var
Index: Integer;
begin
with pFIBQueryl do
begin
Prepare;
for Index := 1 to 3 do
begin
Params[0].LoadFromFile(IntToStr(Index) + '.bmp');
ExecQuery;
end;
Transaction.Commit;

end;
end;

In this example we insert three new records into BIOLIFE and save there images from files "1.omp", "2.omp" and
"3.bmp".

Note: To make the changes permanent we use the Commit method and you need to restart the application to see
record inserted into DBGrid1.

Searching in BLOB-fields

We have considered BLOB-field reading/modification. Now we will illustrate how to search in BLOB-fields. You
should understand that if a BLOB parameter is in the where clause, the server compares BLOB_ID of the field
and BLOB_ID of the parameter (instead of BLOB-field and BLOB parameter contents). That's why you need to
avoid BLOB-parameters and not to use LoadFromFile or LoadFromStream parameters.

As you load parameter values using TStream, actually you create a NEW BLOB with a NEW BLOB_ID at the
server. BLOB_ID is TEMPORARY, and is not intended for comparison. That's why the server throws an internal
error message when you try to compare a BLOB-field. If you strongly need to compare a BLOB-field with some
data, there are two possible variants:

To find records where a BLOB-field is compared with a string of less than 32 Kb:

Set the necessary value to the parameter using AsString. The server will get the SQL_TEXT parameter and then
will convert the value necessary for comparison.
For example:

select
ID
from
BIOLIFE
where
NOTES = :NOTES

The code:

begin
with DataSetl do
begin
ParamByName ('NOTES') .asString:='Sample';
Open;
end;
end;

To compare a BLOB-field with a value of more than 32 Kb, use a special udf.
For example:

select
ID
from
BIOLIFE
where
blobCRC(NOTES) = :NOTES

The code :

TempStream := TMemoryStream.Create;
Try
TempStream.LoadFromFile('MyFile');
with DataSetl do
begin
ParamByName ('NOTES') .asInteger:= blobCRCPas(MyStream);

Open;
end;
finally
FreeAndNil(TempStream);
end;

In this example blobCRC is udf, and blobCRCPas is a Pascal function.
Both functions must be identical, that is they must return the same result for the same input data.

The last note (almost obvious): The "magic" number of 32 Kb is a maximum size of CHAR and VARCHAR
values.

Unique FIBPlus features: Client BLOB-filters. «Transparent»
packing of BLOB-fields.

Many readers already know about BLOB filters technology in Firebird. These user functions enable you to handle
(i.e. to pack/unpack, encrypt, etc) BLOB-fields on the server transparently for the client application. This may be
useful if you need to pack BLOB-fields in a database without having to change the client program. But this
approach will not help you to decrease the net traffic because the server and the application will exchange
unpacked fields.

FIBPIlus has a mechanism of client BLOB-filters, which is very similar to that in Firebird. The advantage of
FIBPIlus local BLOB-filter is its ability to considerably decrease application network traffic: BLOB-fields are packed
before being sent to the client and unpacked on being sent to the client. You can do this by registering two
procedures: for reading and writing BLOB-fields in TpFIBDatabase. FIBPlus will automatically use these
procedures to handle all BLOB-fields of the defined type in all TpFIBDataSets using one TpFIBDatabase
instance. In this example we will illustrate this mechanism:

First we will create a table with BLOB-fields and a trigger to generate unique primary key values:
CREATE TABLE "BlobTable" (

"Id" INTEGER NOT NULL,
"BlobText" BLOB sub type -15 segment size 1);
ALTER TABLE "BlobTable" ADD CONSTRAINT "PK BlobTable" PRIMARY KEY ("Id");

NOTICE THAT sub_type MUST HAVE A NEGATIVE VALUE!

Note: «There are several predefined BLOB subtypes in InterBase. All these subtypes are not negative, e.g.
subtype 0 is reserved for binary data, subtype 1 - text, subtype 2 - BLR (Binary Language Representation), etc.
Users can also add their own BLOB subtypes with negative values.

Now place the following components on the form:
pFIBDataSetl: TpFIBDataSet;

pFIBTransactionl: TpFIBTransaction;
pFIBDatabasel: TpFIBDatabase;
DataSourcel: TDataSource;

DBGridl: TDBGrid;

DBMemol: TDBMemo;

Buttonl: TButton;

OpenDialogl: TOpenDialog;

Link FIBPlus components and generate queries for pFIBDataSet1 (only for the "BlobTable" table) with SQL
Generator. You will get the following form:

Devrace FIBPlus: Client BLOB-Filter

Py Erowse and Add | W Activate BLOB-Filter

19 (BLOB) Text View | HEX View |

unit b ainF;
interface

uzes
Windows, Messages, SysUtils, Wariants, Clazzes, Graphics, Contrals, Formes,
Dialogs, ExtChils, DBChls, StdChilz, Grids, DBGnds, DB, FIBD atabaze,
pFIBD atabaze, FIBD ataSet, pFIBD ataSet;

type
TForm1 = clazz[TForm)
pFlBDataSet]: TpFIBDataSet:
pFlB Tranzaction?: TpFIETransaction;
pFlBD atabasel: TpFlBDatabasze;
DataSourcel: TDataSource;
DEGnd1: TDEGrd;
DEMemol: TDBMemo;
Buttorn1: TEutton;
OpenDialogl: TOpenDialog;
procedure FormCreate(Sender: TObject);
procedure Button] Click[Sender: TObject);
private
{ Private declarations

Picture.2. An application with FIBPlus BLOB-filters
We will write a handler for pressing the button:
procedure TForml.ButtonlClick(Sender: TObject);

begin
if not OpenDialogl.Execute then
exit;
pFIBDataSetl.Append;
TBlobField (pFIBDataSetl.FieldByName('BlobText')).LoadFromFile(OpenDialogl.FileName)
pFIBDataSetl.Post;
end ;

Now we will create functions of packing/unpacking blob-fields:

procedure PackBuffer(var Buffer: PChar; var BufSize: LongInt);
var srcStream, dstStream: TStream;

begin
srcStream := TMemoryStream.Create;
dstStream := TMemoryStream.Create;
try
srcStream.WriteBuffer(Buffer™, BufSize);
srcStream.Position := 0;

GZipStream(srcStream, dstStream, 6);
srcStream.Free;

srcStream := nil ;
BufSize := dstStream.Size;
dstStream.Position := 0;

ReallocMem(Buffer, BufSize);
dstStream.ReadBuffer(Buffer™, BufSize);

finally
if Assigned(srcStream) then srcStream.Free;
dstStream.Free;
end ;
end ;

procedure UnpackBuffer(var Buffer: PChar; var BufSize: LongInt);
var srcStream,dstStream: TStream;

begin
srcStream := TMemoryStream.Create;
dstStream := TMemoryStream.Create;
try
srcStream.WriteBuffer(Buffer™, BufSize);
srcStream.Position := 0;

GunZipStream(srcStream, dstStream);
srcStream.Free;
srcStream:=nil;
BufSize := dstStream.Size;
dstStream.Position := 0;
ReallocMem(Buffer, BufSize);
dstStream.ReadBuffer(Buffer™, BufSize);

finally
if assigned(srcStream) then srcStream.Free;
dstStream.Free;

end ;

end ;

Do not forget to add two modules to the section uses: zStream and IBBlobFilter. The first is used to make
archives with data, the second controls BLOB-filters and is included in FIBPIlus. Now you only have to register
BLOB-filters by calling the RegisterBlobFilter function. The value of the first parameter is a BLOB-field type (in this
case it is -15); the second and third parameters are functions of BLOB-field packing/unpacking:

procedure TForml.FormCreate(Sender: TObject);

begin
pFIBDatabasel.RegisterBlobFilter(-15, @PackBuffer, @UnpackBuffer);
pFIBDatabasel.Connected := True;
pFIBDatasetl.Active := True;

end ;

Run the application, delete some records and add new ones. You will see no changes. But if you look what is
really saved in BLOB-fields, you will see that all the data are packed:

1F8E 0300 0000 0000 0000 D555 53B4F DE3O0 oo .. &
O0x010 | 147E 47EA TFFO C3Z4 DEEZS 0OBEZ &17B 2842 | ~crO
Ox020 | 1aZD 1421 EpaDp 2265 487E S8E4 2647 C©523 .-.lE

0x0320| 7122 DES1 ZD3S FFEE 736C EV5Z DATS 3BES o "Ha-
O0x040 | 17%E 7Z6E FPCE EDB2 50423 £1D08 Z517 7272 | hrnm
0x050 | 04DE EBED O0%26% 40CD 75902 a454 1A74 SFSF $HnH.
O0x0&0 | BE11E Z103 EZ37 0OEDS 25368 CD17 2052 BCDZ £.1¥e
0x070 | D74e A428 7DE1l 4470 &550 1As5 5C6E TZ9E UFA (]}
0x080 ZEBSE DESA 844C 8534 asa0 BO71 A17Z 1D1Z +"HE,,
0x0%0 | parS EOSS EBE140 D3DS DEBC BCZE EYES DOOE THBO@a¥t
O0x0&0 | E145 ED74 AE44 £A3D 8DE0 1817 C353 &EFE IZt®
0x0BO SCEE BO4S8 65D7 S507B 6330 E1E3 41C5 BEGS Bk “He
Ox0c0 | 5625 DO1F 53ZA E3Z?0 1DE3 84cd 0DAC DAZT WViEP. 2
0=x0D0 OYEE FETZ 3860 D373 8434 e0A4 BED4 2231 . merd
Oxx0E0 | A2Z250 73530 C774 EB48E 4465 T5A1 48F7 2116 FHuPS

£ b

Picture 3. Data in the BLOB-field, packed by FIBPIlus local filter.

So, if the application sends already packed BLOBs to (and gets from) the server, network traffic can considerably
decrease! Of course you can pack BLOB-fields without using the above-described mechanism of BLOB-filters.
For example, you can compress a field in the Button1Click procedure before saving it; then decompress in the
AfterScroll handler (or do some similar operations). Bult, firstly, you will greatly simplify your code using the
centralized mechanism of BLOB-filters (as BLOB fields are handled imperceptibly for the rest parts of the
program) and secondly you will avoid commonplace errors (e.g. when you have packed BLOB fields in one part
of the program and no packed BLOBs in another).

Note:

If you write filtered BLOBs in stored procedures, you must set the subtype of the input parameter in the stored
procedure. For example:

CREATE PROCEDURE "BlobTable U"(
"Id" INTEGER,
"BlobText" BLOB SUB_TYPE -15)
AS
BEGIN
UPDATE "BlobTable"
SET "BlobText" = :"BlobText"
WHERE ("Id" = :"Id");
END;

In case you do not set the input parameter subtype, the BLOB-parameter will have default subtype 0 and no
filtering will happen in the client application on calling this stored procedure.

Translated by Marina Novikova.

Special thanks to Jason Chapman for proof-reading.

	How to work with Blobs
	Using TpFIBDataSet for work with BLOB-fields
	Using TpFIBQuery with BLOBs
	Searching in BLOB-fields
	Unique FIBPlus features: Client BLOB-filters. «Transparent» packing of BLOB-fields.

